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Abstract: Humans, even at a very early age, can learn visual concepts and under-1

stand geometry and layout through active interaction with the environment, and2

generalize their compositions to complete tasks described by natural languages in3

novel scenes. To mimic such capability, we propose Embodied Concept Learner4

(ECL) in an interactive 3D environment. Specifically, a robot agent can ground5

visual concepts, build semantic maps and plan actions to complete tasks by learn-6

ing purely from human demonstrations and language instructions, without access7

to ground-truth semantic and depth supervisions from simulations. ECL consists8

of: (i) an instruction parser that translates the natural languages into executable9

programs; (ii) an embodied concept learner that grounds visual concepts based10

on language descriptions; (iii) a map constructor that estimates depth and con-11

structs semantic maps by leveraging the learned concepts; and (iv) a program12

executor with deterministic policies to execute each program. ECL has several13

appealing benefits thanks to its modularized design. Firstly, it enables the robotic14

agent to learn semantics and depth unsupervisedly acting like babies, e.g., ground15

concepts through active interaction and perceive depth by disparities when mov-16

ing forward. Secondly, ECL is fully transparent and step-by-step interpretable in17

long-term planning. Thirdly, ECL could be beneficial for the embodied instruc-18

tion following (EIF), outperforming previous works on the ALFRED benchmark19

when the semantic label is not provided. Also, the learned concept can be reused20

for other downstream tasks, such as reasoning of object states.21

Keywords: Embodied AI, Embodied Concept Learning, Instruction Following22

1 Introduction23

Embodied instruction following (EIF) [1] is a popular task in robot learning. Given some multi-24

modal demonstrations (natural language and egocentric vision, as shown in Fig. 1) in a 3D environ-25

ment, a robot is required to complete novel compositional instructions in unseen scenes. The task26

is challenging because it requires accurate 3D scene understanding and semantic mapping, visual27

navigation, and object interaction.28

Recent works for EIF can be typically divided into two streams and they have certain limitations. 1)29

End-to-end imitation learning methods [1, 2, 3, 4] directly input the visual observation of the current30

step and language instructions into the model, and output the action for the next step. For exam-31

ple, Pashevich et al. [4] has presented the episodic transformer to predict the agent’s actions with32

an attention mechanism and a progress monitor. Such models work by simply memorizing train-33

ing scenes and trajectories. While they achieve good performance in seen environments, they fail34

to generalize well in unseen scenes. Furthermore, these black-box models often lack transparency,35

interpretability, and generalizability. 2) Mapping-based methods [5, 6] leverage the map representa-36
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tions [7, 8, 9, 10] by building a 3D voxel map from the predicted depths and instance segmentation37

masks. A semantic top-down map of the scene is then constructed and updated at each step. These38

works perform explicit exploration and interactions through semantic search policies [6] to achieve39

the natural language goal, which is transparent and interpretable. However, they assume that the40

agent has learned the depth and semantics passively from large amounts of data. The semantic la-41

bels and depth supervisions are often labor-intensive and hard to obtain in the real world. We argue42

that such supervision signals are unnecessary since we can learn language concepts and visual dis-43

parity through interactions in the environments. For example, by achieving the goal described in44

Fig. 1, humans can learn what the concepts “knife” and “table” are and perceive that the table in45

frame 2 is physically closer to the agent than frame 1.46

Goal: "place a knife on the microwave oven table".

1. Exploration 2. Interaction 3. Visual Navigation

"grab the knife in the 
back the kitchen sink"

"walk over to
the microwave"

"place the knife on the 
left side of the table"

"walk over to 
the kitchen sink"

4. Interaction

Figure 1: An example of a language goal and its corresponding
four subgoals. The top and bottom rows show visual observations
by the robotic agent and our grounded semantics, respectively.
We show that we align object concepts encoded in subgoals with
visual proposals to learn concepts in the embodied environment.

This paper answers a question47

naturally raised from the above48

issues: can we make the agent49

behave like a baby? A baby50

is able to learn domain knowl-51

edge from environmental inter-52

actions and expert demonstra-53

tions without additional supervi-54

sion to achieve the natural lan-55

guage goal. We speculate that56

babies do this possibly in a way57

similar as: (i) Learn skills and58

concepts from expert demon-59

strations (environment observa-60

tions and language instructions),61

e.g., the skill “place” and con-62

cepts “knife” and “table” can be63

grounded from the demonstra-64

tion “place a knife on the microwave oven table”. (ii) Given a new compositional language goal65

like “put a clean tomato on the dining table” in Fig. 2, one may process it into many subgoals,66

like “pickup tomato”, “clean tomato”, and “put it on the table”. (iii) Explore the scene and build67

a semantic map, where depth information is estimated automatically based on the disparity when68

moving forward or backward. (iv) Complete each subgoal based on the learned semantic map and69

skills, and update the semantic map dynamically.70

Motivated by the above observations, we propose Embodied Concept Learner (ECL) that mim-71

ics baby learning for embodied instruction following. It consists of: (i) an instruction parser that72

parses the natural languages into executable programs; (ii) an embodied concept learner that aligns73

language concepts with visual instances; (iii) a map constructor based on the grounded semantic74

concepts and unsupervised depth estimation; and (iv) a program executor with deterministic poli-75

cies to perform each subtask. These components cooperate seamlessly: the concept learner takes76

words from the output of the instruction parser as input; the concept grounding probabilities are used77

for Bayesian filtering in the map building and updating; in turn, the mapping module can correct the78

wrong concepts in grounding; a soft obstacle map is also constructed from the concept learner for79

the deterministic policy in the program executor.80

Our contributions are three-fold. 1) We introduce ECL, a modular framework that can ground vi-81

sual concepts, build semantic maps and plan actions to complete complex tasks by learning purely82

from human demonstrations and language instructions. 2) ECL achieves competitive performance83

without semantic labels on embodied instruction following (ALFRED) [1], while maintaining high84

transparency and step-by-step interpretability. 3) We could also transfer the learned concepts to85

other tasks in the embodied environment, like the reasoning of object states.86
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2 Related Work87

Embodied Instruction Following. Language-guided embodied tasks have drawn much attention,88

including visual language navigation (VLN) [11, 12, 13, 14, 15, 16, 17], embodied instruction fol-89

lowing (EIF) [18, 19, 20, 21, 22, 1], object goal navigation [23, 24, 25], embodied question an-90

swering [26, 27], and embodied representation learning [28, 29, 30]. Among them, EIF is one of the91

most challenging tasks, requiring simultaneous accurate 3D scene understanding and memory, visual92

navigation, and object interaction. [1, 4] present end-to-end models with an attention mechanism to93

process language and visual input and past trajectories, predicting the subsequent action directly. Af-94

ter that, works [20, 22, 19] modularly process raw language and visual inputs into structured forms95

by Mask R-CNN [31]. The above methods lack transparency and generalizability to unseen scenes.96

Recently, [5, 6] proposed mapping-based methods to convert visual semantics and estimated depth97

into Bird’s-eye-view (BEV) semantic maps and navigate based on the spatial memory. However,98

such methods require depth and semantic supervision, hence impractical in real-world scenarios.99

We overcome the challenge by learning concepts and mapping in a self-supervised manner.100

Visual Grounding and Concept Learning. Our work is also related to visual grounding [32, 33,101

34, 35, 36, 37, 38] and concept learning [39, 40, 41, 42, 43], which align concepts onto objects102

in the visual scenes. Traditional visual grounding methods [35, 33] map text phrases and regional103

features of images into a common space for cross-modality matching. Recently, there are some104

works [39, 40, 44] learning visual concepts through question answering in passive images or videos.105

Differently, we study learning both visual concepts and physical depths through language instruc-106

tions in the active embodied environment, which is more similar to how humans learn in the real107

world. Some works study language grounding in 3D world [45, 46, 47]. However, they do not108

involve robot agents and active exploration. Hermann et al. [43] interprets language in a simple109

simulated 3D environment, which does not consider diverse objects and actions in challenging pho-110

torealistic environments.111

3 Method112

In this work, we focus on the embodied instruction following task, i.e., a robotic agent is required to113

achieve the goal in the language instruction by exploring, navigating, and interacting with the em-114

bodied environment. Embodied Concept Learner (ECL) includes an instruction parser, an embodied115

concept learner, a map constructor, and a program executor. The modularized design ensures its116

transparency and step-by-step interpretability. An overview of ECL is shown in Fig. 2.117

3.1 Instruction Parser118

The instruction parser converts high-level instructions into a sequence of subtasks represented by119

programs. Existing works [6, 5, 20, 22, 4] use expert trajectories with subtasks annotations as120

supervision because they are easy to obtain as stated in [6]. Following this strategy, we fine-tune121

a pre-trained BERT model [48] learned the mapping from a high-level instruction to a sequence of122

subtasks (e.g., “put a clean tomato on the diningtable”→ “(Pickup, Tomato), (Put, SinkBasin), ...”)123

leveraging the subtasks sequences annotations in ALFRED [1]. For each subtask, the instruction124

parser predicts the arguments, which are the same as in [6]: (i) “obj” for the object to be picked125

up, (ii) “recep” for the receptacle where “obj” should be ultimately placed, (iii) “sliced” for whether126

“obj” should be sliced, and (iv) “parent” for tasks with intermediate movable receptacles (e.g.,127

“cup” in “Put a knife in a cup on the table”). After we get the subtask programs, we extract the128

language embeddings e ∈ R768 of the object words in all subprograms through a pretrained Bert129

model (bert-base-uncased) [49] for the follow-up concept learner module.130

3.2 Embodied Concept Learner131

Humans, even at a very early age, naturally perceive and parse the scene as objects for further132

understanding, i.e., grouping pixels to regions without knowing their semantics. They then learn the133
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Obj 0

Obj 1
…

Obj 7

Concept
Grounding

Tomato

DiningTable

SinkBasin

Faucet

Ⅲ. Map Constructor and IV. Program Executor

Ⅰ. Instruction Parsor

PickUp Put ToggleOn ToggleOff PickUp Put
Tomato Tomato, SinkBasin Faucet Faucet Tomato Tomato, Table

Ⅱ. Embodied Concept Learner

Deterministic
Policy

3D Projection
& Mapping

Object Proposals Object Features Word Embeddings

Action: ToggleOn Faucet

Depth (unsup.) BEV Map

Depth 
Parsing

Proposal
Extraction

t

t-1

t-2

Bayesian
Filtering

Put a clean
Tomato on the
DiningTable.

Program
Parsing

Figure 2: The framework of ECL. (i) Given a natural language goal, the instruction parser first
parses it into a sequence of executable programs. (ii) The embodied concept learner extracts regional
proposals in current frame and align them with the learned concepts. (iii) The map constructor then
builds up semantic maps based on estimated depths and grounded visual concepts. (iv) Having the
semantic maps and executable programs, the program executor predicts the agent’s next action with
a deterministic policy.

object concepts from active interactions or expert demonstrations. Similarly, the embodied concept134

learner leverages an object proposal network [31] without category labels and grounds the object135

semantics from subgoal programs. There are two cases to be considered: 1) If a subgoal completes,136

the object and its corresponding receptacle objects must be displayed in the current visual frame,137

and most likely in adjacent frames. In this way, the concept of these objects can be grounded.138

For example, “go to microwave”, “put the mug on the coffeemachine”, and “put a mug with a139

pen in it on the shelf” involve 1, 2, and 3 objects, respectively. We sample visual data from four140

frames before completing the subtask and two frames after it to learn the visual concept based on141

the corresponding action descriptions. 2) If the robot agent acts “Pickup an object”, the object142

appears in visual observation until the robot drops it. The two types of interaction data are merged143

and shuffled and used as input to our embodied concept learner.144

Concretely, let {o1, o2, ..., ok} denotes k objects detected in an visual input, and {f1, f2, ...fk} is145

their corresponding feature representations from the last layer of the object proposal network (f ∈146

R1024 ). Let {e1, e2, ..., el} represents l word embeddings in a subgoal (program representation,147

e ∈ R768, stated in Sec. 3.1). We first project the visual representation f into the semantic space148

f ′ ∈ R768 where the word embeddings reside by a two-layer perceptron (MLPs). The MLPs have149

dimensions of 1024 → 1024 → 768 with Layer Normalization [50] and GELU activation [51]150

between the two layers. We then leverage the Hungarian maximum matching algorithm [52] for151

the k-l matching, and a min(k, l) object visual representations can be matched with their word152

embeddings. Given an assignment matrix x ∈ Rk×l, the task could be formulated as a minimum153

cost assignment problem mathematically as follows:154

min
x

k∑
i=1

l∑
j=1

d(f ′
i , ej)xij s.t.

k∑
i=1

xij = 1,

l∑
j=1

xij ∈ {0, 1}, xij ∈ {0, 1}, (1)

where d(·) denotes the mean square error (MSE) and we assume l < k here, vice versa. We compute155

the loss after x is determined to learn the semantic projection model.156

During inference, we project each object proposal representation into the semantic space and per-157

form nearest neighbor search (NNS) to assign a category label for it. We also calculate a soft class158

probability pi for the i-th object by softmax ({0.1/dij}j), where dij is the retrieval distance be-159

tween the i-th object feature and the j-th word embedding. The semantic probability p will be used160
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for 1) Bayesian filtering in mapping and 2) statistics of the most likely location of each type of object161

as a navigation policy.162

3.3 Map Constructor163

Human beings understand the semantics and layouts of space, e.g., a room, mainly by first moving164

around, then perceiving the depth (geometry), and finally building up a semantic virtual map in165

our mind. To mimic this process, we propose a semantic map construction module leveraging the166

unsupervised depth learning technique [53, 54] and probabilistic mapping inspired by Bayesian167

filtering. Concretely, we first train a monocular depth estimation network unsupervisedly, leveraging168

the photometric consistency [53] among adjacent RGB observations captured by a roaming agent.169

We use the unsupervised depth estimation for map construction. To build up the map, we represent170

the scene as voxels. Each voxel maintains a semantic probability vector pv (obtained from Sec. 3.2)171

and a scalar variable σv that represents the measurement uncertainty of this voxel. As the new depth172

observation come in, we first project it to 3D space as a 3D point cloud and then transform it into173

the map space according to the agent ego-motion. The transformed point cloud is voxelized for the174

follow-up map fusion.175

We denote the newly observed point clouds (after voxelization) as S = {(ps, σs)}|S|
s=1 and the176

current voxel map as M = {(pm, σm)}|M |
m=1. The newly observed voxels are fused to update the177

previous map as:178

pm ←
σ2
s

σ2
s + σ2

m

pm +
σ2
m

σ2
s + σ2

m

ps, σm ← (σ−2
s + σ−2

m )−
1
2 . (2)

Here, we assume ps and pm are the semantic log probability vectors (obtained from Sec. 3.2) be-179

longing to a pair of corresponding voxels in the new frame and the current map respectively. σs and180

σm are the estimated variances of these two voxels. Initially, the variance σs of the observed voxel181

is predicted by a CNN. This CNN is trained with the depth estimation network in an unsupervised182

manner by assuming a Gaussian noise model following [55]. The uncertainty-aware mapping makes183

it possible to correct previous mapping errors as the exploration goes on. Our probabilistic mapping184

is proven to be essential especially when the depth measurements are erroneous.185

3.4 Program Executor186

After concept learning and mapping, we take the average semantic probability map from demonstra-187

tions as our navigation policy. It indicates the location where each type of object most likely exists.188

Although the previous work FILM [6] trains a semantic policy model to predict the possible location189

of an object given a part of the semantic layout, the model is likely to be over-fitting. In contrast, our190

semantic policy is the averaged semantic map based on statistics without training, producing stable191

results. As shown in Fig. 2, given the predicted subprogram, the current semantic map, and a search192

goal sampled from the semantic policy (averaged semantic map), the deterministic policy outputs a193

navigation or interaction action.194

The deterministic policy is defined as follows. If the object needed in the current subtask is observed195

in the current semantic map, the location of the object is selected as the goal; otherwise, we sample196

the location based on the distribution of the corresponding object class in our averaged semantic197

map as the goal. The robot agent then navigates towards the goal via the Fast Marching Method [56]198

and performs the required interaction actions.199

4 Experiments200

We show the effectiveness of each component of ECL on the ALFRED [1] benchmark. For the EIF201

task, we report Success Rate (SR), goal-condition success (GC), path length weighted SR (PLWSR),202

and path length weighted GC (PLWGC) as the evaluation metrics on both seen and unseen environ-203

ments. SR is a binary indicator of whether all subtasks were completed. GC denotes the ratio of goal204
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Table 1: Comparison with other methods on ALFRED benchmark. The upper part contains unsu-
pervised methods while the lower part contains the supervised counterparts with semantic or depth
supervisions. We also report the ECL-Oracle model as an upper bound, with supervised segmenta-
tion and depth. The top scores are in bold. Red denotes the top success rate (SR) (ranking metric of
the leaderboard) on the test unseen set.

Method
Supervision Test Seen Test Unseen

Semantic Depth PLWGC
(%)

GC
(%)

PLWSR
(%)

SR
(%)

PLWGC
(%)

GC
(%)

PLWSR
(%)

SR
(%)

SEQ2SEQ [1] × × 6.27 9.42 2.02 3.98 4.26 7.03 0.08 3.90
MOCA [2] × × 22.05 28.29 15.10 22.05 9.99 14.28 2.72 5.30
LAV [3] × × 13.18 23.21 6.31 13.35 10.47 17.27 3.12 6.38
E.T. [4] × × 34.93 45.44 27.78 38.42 11.46 18.56 4.10 8.57
ECL (OURS) × × 9.47 18.74 4.97 10.37 11.50 19.51 4.13 9.03
EMBERT [18]

√
× 32.63 38.40 24.36 31.48 8.87 12.91 2.17 5.05

LWIT [19]
√

× 23.10 40.53 43.10 30.92 16.34 20.91 5.60 9.42
HITUT [22]

√
× 17.41 29.97 11.10 21.27 11.51 20.31 5.86 13.87

ABP [20]
√

× 4.92 51.13 3.88 44.55 2.22 24.76 1.08 15.43
VLNBERT [21]

√
× 19.48 33.35 13.88 24.79 13.18 22.60 7.66 16.29

HLSM [5]
√ √

11.53 35.79 6.69 25.11 8.45 27.24 4.34 16.29
ECL W. DEPTH (OURS) ×

√
12.34 27.86 8.02 18.26 11.11 27.30 7.30 17.24

ECL-ORACLE (OURS)
√ √

15.19 36.40 10.56 25.90 13.08 35.02 9.33 23.68

Grounding Acc. PLWGC GC PLWSR SR
0

20

40

60
49.1

10.6

25.4

6.9

15.9

57.6

11.1

27.3

7.3

17.2

Learned Encoding
Word Embedding

Figure 3: Results with different language repre-
sentations in concept learning on test unseen.
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20

25

6.0

16.6

2.8

7.4

10.9

19.8

4.2

9.0

Maximum Fusion
Bayesian Filtering

Figure 4: Evaluation with different semantic
mapping techniques on test unseen.

conditions completed at the end of an episode. Both SR and GC can be weighted by (path length of205

the expert trajectory)/(path length taken by the agent), which are called PLWSR and PLWGC. We206

also report the (grounding) accuracy for the concept learning and downstream reasoning tasks. More207

details of the benchmark and the training settings for each component can be found in Appendix.208

4.1 Embodied Instruction Following on ALFRED209

The results on ALFRED are shown in Tab. 1. ECL achieves new state-of-the-art (SR: 9.03 vs. 8.57)210

on the test unseen set when there are no semantic and depth labels. Though counterparts [4, 2]211

have better performance on test seen, they are likely to be over-fitting by simply memorizing the212

visible scenes. However, our ECL achieves stable results between the test seen set and unseen213

set, demonstrating its generalizability. In Fig. 5, we show a trajectory to execute “place a washed214

sponge in a tub” and the intermediate estimates generated by ECL.215

When depth supervision is used, our ECL w. depth model has a 17.24% success rate on the216

test unseen set, as well as competitive goal-condition success rate and path length weighted re-217

sults. Note that FILM [6] leverages additional dense semantic maps as supervision to train a policy218

network, hence not apple-to-apple comparable to our work. We report the ECL-Oracle model as219

an upper bound, which learns supervised segmentation and depth, and can be seen as a variant of220

FILM [6] without the policy network. It achieves 23.68% SR on test unseen.221

Ablation Study. We conduct experiments to study the effect of the language representation in222

concept learning, and the mapping strategy in map construction. The results are shown in Fig. 3223

and Fig. 4, offering 1) benefiting from the natural structure of language, the word embedding is224
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Search for 
“Sponge”

Instruction: Place a washed sponge in a tub.

Pick up “sponge” Go to “SinkBasin” Wash “Sponge” Pick up “Sponge” Put “Sponge” 
in “Hub”

t=4 t=12 t=17 t=45 t=50 t=53

Egocentric 
RGB 

Observation

Unsupervised
Depth 

Estimation

Unsupervised
Semantic 
Grounding

Semantic Map

Figure 5: Visualization of intermediate estimates by ECL when an agent tries to accomplish an
instruction. Based on the RGB obsevations, our system estimate the depths and semantic masks.
The BEV semantic map is gradually established with these estimates as the exploration going on.
The goals (sub goal/final goal) are represented by big blue dots in the semantic map, while the agent
trajectories are plotted as small red dots.

Table 2: The percentage of failure cases belong-
ing to different failure modes on validation set.
Error mode Seen % Unseen %
Grounding error/Target not found 36.38 28.53
Interaction failures 6.59 10.39
Collisions 4.34 4.43
Blocking/Object not accessible 31.29 39.75
Others 21.41 16.90

Table 3: Downstream concept reasoning accu-
racy. We leverage ECL to reason about if an ob-
ject exists or count its numbers in a scene.

Model Grounding % Exist % Count %
Random Guess – 50.0 25.0
C3D [57] – 78.1 34.4
ECL (Ours) 57.6 90.6 56.3

better than the learned encoding, and 2) Bayesian filtering outperforms maximum fusion as the soft225

probabilities could correct wrong labels.226

4.2 Evaluation of Concept Learning227

Quantitative Evaluation. We report the per-task evaluation results in Fig. 6. The concept learning228

accuracies of objects “HandTowel”, “KeyChain”, “Bowl”, and “Television” are above 80%, because229

these objects frequently appear alone in the scene (easy to learn and less likely to be confused).230

Objects like “HandTowel”, “KeyChain”, “Bowl”, and “Television” are rarely shown in the envi-231

ronment, thus their concepts are difficult to learn. We also notice that the object “apple” appears232

very rarely, but our model grounds its concept well with the help of language embeddings, e.g., the233

relationship between “tomato” and “apple”.234

Error Modes. Tab. 2 shows the error mode of ECL w. depth on ALFRED validation set. We see235

that “blocking and object not accessible” is the most common error mode, which is mainly caused236

by incorrectly estimated depth or undetected visual objects/concepts. Additionally, around 30% of237

the failures are due to wrongly grounded concepts or the target object not being found. If we replace238

our unsupervised concept learning with supervised semantics (ECL-Oracle), the percentage of the239

error mode for “Grounding error/Target not found” changes to 7.38% and “blocking and object not240

accessible” becomes 44.00%.241
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Figure 6: Concept learning ac-
curacy. Results for challenging
small objects are shown. Com-
plete analyses are in appendix.

Q1: How many sofas are in
the room?

A: 2.

Visual Frame Semantic Map

Q2: Are the knife and spatula
on the same table?

A: Yes.

Visual Frame Learned Concepts

Figure 7: Examples of con-
cept reasoning by ECL: the
count task and the high-level
question-answering.

Figure 8: Concept learning vi-
sualization. From left to right:
the original image, supervised
instance segmentation map, and
our concept learning results.

Visualization. We visualize our concept learning results in Fig. 8 by showing the original image,242

the supervised learned semantics, and our grounded semantics by the concept learner. We observe243

our concept learning keeps more object proposals than the supervised model. While most of the244

main objects in an image can be grounded correctly, there exist a few wrong labels in overlapped245

or corner areas. We also show two failure cases on the third and fourth rows of Fig. 8. The first246

one recognizes “floor” as “diningtable”, a bug that could be fixed by our Bayesian filtering-based247

semantic mapping. The other one identifies “coffeetable” as “drawer”, which causes the error “target248

not found”. The instruction would succeed if we take the ground truth concept for “coffeetable”.249

4.3 Concept Reasoning250

In addition to EIF, we show the learned concept can be transferred to embodied reasoning tasks,251

e.g., (i) the existence of objects in the scene, (ii) count the number of objects in the scene (Fig. 7).252

We build the reasoning dataset by randomly sampling 16 objects from 10 scenes, of which 8 scenes253

are used for training and the other 2 for testing. A naı̈ve baseline is random guessing with 50%254

accuracy for the exist task and 25% accuracy for the count task. We also train a C3D model [57]255

that samples 16 frames as input and outputs predictions directly. Our ECL performs clear and256

step-by-step interpretable reasoning through semantic grounding and mapping. As Tab. 3 shows, it257

outperforms both baselines by a large margin. By embodied concept learning, ECL can also resolve258

high-level 3D question-answering tasks, like “whether two objects appear on a table” in Fig. 7.259

5 Discussion and Limitations260

This paper proposes ECL, a general framework that can ground visual concepts, build semantic maps261

and plan actions to accomplish tasks by learning purely from human demonstrations and language262

instructions. While achieving good performance on EIF and reasoning, ECL has limitations. It cur-263

rently focuses solely on learning object concepts and 3D layouts through interactive environments.264

It would be exciting to extend the framework to learn more dynamic action concepts (e.g.“cutting265

tomatos” and “picking up a knife”) and apply them to more diverse downstream tasks like action266

grounding and retrieval [58, 59]. Also, although the ALFRED benchmark is photorealistic, com-267

prehensive, and challenging, there still exists a gap between the embodied environment and the268

real world. We leave the physical deployment of the framework as our future work. The proposed269

approach has no ethical or societal issues on its own, except those inherited from robotics.270

8



References271

[1] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and272

D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In273

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages274

10740–10749, 2020.275

[2] K. P. Singh, S. Bhambri, B. Kim, R. Mottaghi, and J. Choi. Moca: A modular object-centric276

approach for interactive instruction following. arXiv preprint arXiv:2012.03208, 2020.277

[3] K. Nottingham, L. Liang, D. Shin, C. C. Fowlkes, R. Fox, and S. Singh. Modular framework278

for visuomotor language grounding. arXiv preprint arXiv:2109.02161, 2021.279

[4] A. Pashevich, C. Schmid, and C. Sun. Episodic transformer for vision-and-language naviga-280

tion. arXiv preprint arXiv:2105.06453, 2021.281

[5] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi. A persistent spatial semantic representation282

for high-level natural language instruction execution. In Proceedings of the Conference on283

Robot Learning (CoRL), 2021.284

[6] S. Y. Min, D. S. Chaplot, P. Ravikumar, Y. Bisk, and R. Salakhutdinov. Film: Following285

instructions in language with modular methods. arXiv preprint arXiv:2110.07342, 2021.286

[7] M. R. Walter, S. M. Hemachandra, B. S. Homberg, S. Tellex, and S. Teller. Learning semantic287

maps from natural language descriptions. In Robotics: Science and Systems, 2013.288

[8] S. Hemachandra, F. Duvallet, T. M. Howard, N. Roy, A. Stentz, and M. R. Walter. Learning289

models for following natural language directions in unknown environments. In 2015 IEEE290

International Conference on Robotics and Automation (ICRA), pages 5608–5615. IEEE, 2015.291

[9] S. Patki, A. F. Daniele, M. R. Walter, and T. M. Howard. Inferring compact representations for292

efficient natural language understanding of robot instructions. In 2019 International Confer-293

ence on Robotics and Automation (ICRA), pages 6926–6933. IEEE, 2019.294

[10] I. Kostavelis and A. Gasteratos. Semantic mapping for mobile robotics tasks: A survey.295

Robotics and Autonomous Systems, 66:86–103, 2015.296

[11] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and297

A. Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded naviga-298

tion instructions in real environments. In Proceedings of the IEEE Conference on Computer299

Vision and Pattern Recognition, pages 3674–3683, 2018.300

[12] D. Fried, R. Hu, V. Cirik, A. Rohrbach, J. Andreas, L.-P. Morency, T. Berg-Kirkpatrick,301

K. Saenko, D. Klein, and T. Darrell. Speaker-follower models for vision-and-language navi-302

gation. In Advances in Neural Information Processing Systems, 2018.303

[13] F. Zhu, Y. Zhu, X. Chang, and X. Liang. Vision-language navigation with self-supervised304

auxiliary reasoning tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision305

and Pattern Recognition, pages 10012–10022, 2020.306

[14] L. Ke, X. Li, Y. Bisk, A. Holtzman, Z. Gan, J. Liu, J. Gao, Y. Choi, and S. Srinivasa. Tactical307

rewind: Self-correction via backtracking in vision-and-language navigation. In Proceedings308

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6741–6749,309

2019.310

[15] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang, W. Y. Wang, and L. Zhang.311

Reinforced cross-modal matching and self-supervised imitation learning for vision-language312

navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern313

Recognition, pages 6629–6638, 2019.314

9



[16] C.-Y. Ma, Z. Wu, G. AlRegib, C. Xiong, and Z. Kira. The regretful agent: Heuristic-aided navi-315

gation through progress estimation. In Proceedings of the IEEE/CVF Conference on Computer316

Vision and Pattern Recognition, pages 6732–6740, 2019.317

[17] A. Zadaianchuk, G. Martius, and F. Yang. Self-supervised reinforcement learning with inde-318

pendently controllable subgoals. In Conference on Robot Learning. PMLR, 2022.319

[18] A. Suglia, Q. Gao, J. Thomason, G. Thattai, and G. Sukhatme. Embodied bert: A320

transformer model for embodied, language-guided visual task completion. arXiv preprint321

arXiv:2108.04927, 2021.322

[19] V.-Q. Nguyen, M. Suganuma, and T. Okatani. Look wide and interpret twice: Improving per-323

formance on interactive instruction-following tasks. arXiv preprint arXiv:2106.00596, 2021.324

[20] B. Kim, S. Bhambri, K. P. Singh, R. Mottaghi, and J. Choi. Agent with the big picture: Per-325

ceiving surroundings for interactive instruction following. In Embodied AI Workshop CVPR,326

2021.327

[21] C. H. Song, J. Kil, T.-Y. Pan, B. M. Sadler, W.-L. Chao, and Y. Su. One step at a time: Long-328

horizon vision-and-language navigation with milestones. arXiv preprint arXiv:2202.07028,329

2022.330

[22] Y. Zhang and J. Chai. Hierarchical task learning from language instructions with unified trans-331

formers and self-monitoring. arXiv preprint arXiv:2106.03427, 2021.332

[23] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov. Object goal navigation using333

goal-oriented semantic exploration. Advances in Neural Information Processing Systems, 33,334

2020.335

[24] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to explore336

using active neural slam. arXiv preprint arXiv:2004.05155, 2020.337

[25] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivastava, B. Shen, K. E. Vainio, C. Gok-338

men, G. Dharan, T. Jain, et al. igibson 2.0: Object-centric simulation for robot learning of339

everyday household tasks. In Conference on Robot Learning. PMLR, 2022.340

[26] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Embodied question answering.341

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages342

1–10, 2018.343

[27] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and A. Farhadi. Iqa: Visual344

question answering in interactive environments. In Proceedings of the IEEE conference on345

computer vision and pattern recognition, pages 4089–4098, 2018.346

[28] R. Wang, J. Mao, S. J. Gershman, and J. Wu. Language-mediated, object-centric representation347

learning. arXiv preprint arXiv:2012.15814, 2020.348

[29] Y. Bisk, A. Holtzman, J. Thomason, J. Andreas, Y. Bengio, J. Chai, M. Lapata, A. Lazari-349

dou, J. May, A. Nisnevich, et al. Experience grounds language. In Proceedings of the 2020350

Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020.351

[30] M. Prabhudesai, H.-Y. F. Tung, S. A. Javed, M. Sieb, A. W. Harley, and K. Fragkiadaki.352

Embodied language grounding with 3d visual feature representations. In Proceedings of the353

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2220–2229, 2020.354

[31] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE355

international conference on computer vision, pages 2961–2969, 2017.356

[32] C. Kong, D. Lin, M. Bansal, R. Urtasun, and S. Fidler. What are you talking about? text-to-357

image coreference. In CVPR, 2014.358

10



[33] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hockenmaier, and S. Lazebnik.359

Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence360

models. In ICCV, 2015.361

[34] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A joint model of language362

and perception for grounded attribute learning. In ICML, 2012.363

[35] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descrip-364

tions. In CVPR, 2015.365

[36] J. Mao, J. Huang, A. Toshev, O. Camburu, A. L. Yuille, and K. Murphy. Generation and366

comprehension of unambiguous object descriptions. In CVPR, 2016.367

[37] H. Zhang, Y. Niu, and S.-F. Chang. Grounding referring expressions in images by variational368

context. In CVPR, 2018.369

[38] J. Yang, H.-Y. Tung, Y. Zhang, G. Pathak, A. Pokle, C. G. Atkeson, and K. Fragkiadaki.370

Visually-grounded library of behaviors for manipulating diverse objects across diverse config-371

urations and views. In 5th Annual Conference on Robot Learning, 2021.372

[39] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu. The Neuro-Symbolic Concept Learner:373

Interpreting Scenes, Words, and Sentences From Natural Supervision. In ICLR, 2019.374

[40] Z. Chen, J. Mao, J. Wu, K.-Y. K. Wong, J. B. Tenenbaum, and C. Gan. Grounding physical375

concepts of objects and events through dynamic visual reasoning. In ICLR, 2021.376

[41] J. Mao, F. Shi, J. Wu, R. Levy, and J. Tenenbaum. Grammar-based grounded lexicon learning.377

Advances in Neural Information Processing Systems, 2021.378

[42] B. Bergen and J. Feldman. Embodied concept learning. In Handbook of Cognitive Science,379

pages 313–331. Elsevier, 2008.380

[43] K. M. Hermann, F. Hill, S. Green, F. Wang, R. Faulkner, H. Soyer, D. Szepesvari, W. M.381

Czarnecki, M. Jaderberg, D. Teplyashin, et al. Grounded language learning in a simulated 3d382

world. arXiv, 2017.383

[44] M. Ding, Z. Chen, T. Du, P. Luo, J. Tenenbaum, and C. Gan. Dynamic visual reasoning by384

learning differentiable physics models from video and language. Advances in Neural Informa-385

tion Processing Systems, 34, 2021.386

[45] M. Feng, Z. Li, Q. Li, L. Zhang, X. Zhang, G. Zhu, H. Zhang, Y. Wang, and A. Mian. Free-387

form description guided 3d visual graph network for object grounding in point cloud. In ICCV,388

2021.389

[46] J. Roh, K. Desingh, A. Farhadi, and D. Fox. Languagerefer: Spatial-language model for 3d390

visual grounding. In Conference on Robot Learning. PMLR, 2022.391

[47] P. Achlioptas, A. Abdelreheem, F. Xia, M. Elhoseiny, and L. Guibas. Referit3d: Neural listen-392

ers for fine-grained 3d object identification in real-world scenes. In ECCV, 2020.393

[48] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and394

L. Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language395

generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of396

the Association for Computational Linguistics, pages 7871–7880, Online, July 2020. Asso-397

ciation for Computational Linguistics. doi:10.18653/v1/2020.acl-main.703. URL https:398

//aclanthology.org/2020.acl-main.703.399

[49] Meelfy. Pytorch pretrained bert, 2019. URL https://github.com/Meelfy/pytorch_400

pretrained_BERT.401

11

http://dx.doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://github.com/Meelfy/pytorch_pretrained_BERT
https://github.com/Meelfy/pytorch_pretrained_BERT
https://github.com/Meelfy/pytorch_pretrained_BERT


[50] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,402

2016.403

[51] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint404

arXiv:1606.08415, 2016.405

[52] H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics406

quarterly, 2(1-2):83–97, 1955.407

[53] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow. Digging into self-supervised monoc-408

ular depth estimation. In Proceedings of the IEEE/CVF International Conference on Computer409

Vision, pages 3828–3838, 2019.410

[54] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth and ego-411

motion from video. In Proceedings of the IEEE conference on computer vision and pattern412

recognition, pages 1851–1858, 2017.413

[55] A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer414

vision? Advances in neural information processing systems, 30, 2017.415

[56] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Pro-416

ceedings of the National Academy of Sciences, 93(4):1591–1595, 1996. ISSN 0027-8424.417

doi:10.1073/pnas.93.4.1591. URL https://www.pnas.org/content/93/4/1591.418

[57] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal fea-419

tures with 3d convolutional networks. In Proceedings of the IEEE international conference on420

computer vision, pages 4489–4497, 2015.421

[58] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles. Activitynet: A large-scale422

video benchmark for human activity understanding. In CVPR, 2015.423

[59] L. Zhou, Y. Kalantidis, X. Chen, J. J. Corso, and M. Rohrbach. Grounded video description.424

In CVPR, 2019.425

12

http://dx.doi.org/10.1073/pnas.93.4.1591
https://www.pnas.org/content/93/4/1591

	Introduction
	Related Work
	Method
	Instruction Parser
	Embodied Concept Learner
	Map Constructor
	Program Executor

	Experiments
	Embodied Instruction Following on ALFRED
	Evaluation of Concept Learning
	Concept Reasoning

	Discussion and Limitations

