
Dynamic Visual Reasoning by
Learning Differentiable Physics Models

from Video and Language

Mingyu Ding1 Zhenfang Chen2 Tao Du3 Ping Luo1

Joshua B. Tenenbaum3 Chuang Gan2

1The University of Hong Kong 2MIT-IBM Watson AI Lab 3MIT
{myding, pluo}@cs.hku.hk {zfchen, chuangg}@ibm.com {taodu, jbt}@mit.edu

Abstract

In this work, we propose a unified framework, called Visual Reasoning with Differ-
entiable Physics (VRDP), that can jointly learn visual concepts and infer physics
models of objects and their interactions from videos and language. This is achieved
by three seamlessly integrated parts, including a visual perception module, a con-
cept learner, and a differentiable physics engine. They work as follows: first, the
visual perception module parses each video frame to object-centric trajectories and
representations; second, the concept learner grounds visual concepts (e.g., color,
shape, and material) from the representations and language to provide prior knowl-
edge for the physics engine; third, the differentiable physics model, implemented
as an impulse-based differentiable rigid-body simulator, performs differentiable
physical simulation based on the grounded concepts to infer physical properties,
such as mass, restitution, and velocity, by fitting the simulation into the perceived
object trajectories. Consequently, these learned concepts and physical models
could be used to explain what we have seen and imagine what is about to happen
in both future and counterfactual scenarios. Integrating differentiable physics into
the dynamic reasoning framework offers several appealing benefits: 1) Powered
by accurate dynamics prediction of learned physics models, VRDP achieves state-
of-the-art performance on both synthetic and real-world benchmarks while still
maintaining high transparency and interpretability; remarkably, it improves the
accuracy of predictive and counterfactual questions by 4.5% and 11.5% compared
to its best counterpart. 2) VRDP is highly data-efficient as the physical parameters
can be optimized from few, even one single video. 3) With all physical parameters
inferred, VRDP can quickly learn new concepts from few examples. Code is
available at https://github.com/dingmyu/VRDP 1.

1 Introduction

Dynamic visual reasoning about objects, relations, and physics is essential for human intelligence.
Given a raw video, humans can easily use their common sense of intuitive physics to understand
what has happened, predict what will happen next, and infer what would happen in counterfactual
situations. Such human-like physics sense is also of great importance in practical applications such
as industrial robot control [2, 50, 52].

Previous works have made much effort to provide artificial intelligence (AI) models with such
physical reasoning capabilities. One popular strategy is to develop pure neural-network-based
models [64, 20, 37]. These methods typically leverage end-to-end neural networks [29, 32] with

1Project page: https://dingmyu.github.io/vrdp/

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://github.com/dingmyu/VRDP
https://dingmyu.github.io/vrdp/

powerful attention modules such as Transformer [70] to extract attended features from both video
frames and question words, based on which they answer questions directly. Despite their high
question-answering accuracy on CLEVRER [80], a challenging dynamic visual question-answering
benchmark, these black-box models neither learn concepts nor model objects’ dynamics. Therefore,
they lack transparency, interpretability, and generalizability to new concepts and scenarios.

Another common approach to dynamic visual reasoning is to build graph neural networks (GNNs) [45].
These GNN models [53, 80, 16] treat objects in the video as nodes and perform object- and relation-
centric updates to predict objects’ dynamics in future or counterfactual scenes. Such systems achieve
decent performance with good interpretability on CLEVRER by combining the GNN-based dynamics
models with neural-symbolic execution [59, 81]. However, these dynamic models do not consider
laws of physics or use concepts encoded in the question-answer pairs associated with the videos. As a
result, they show limitations in counterfactual situations that require long-term dynamics prediction.

Although (graph-)neural-network-based strategies have competitive performance on CLEVRER,
dynamic visual reasoning is still far from being solved perfectly. In particular, due to the lack
of physics-based dynamics, existing models [80, 20, 16] typically struggle to reason about future
and counterfactual events, especially when training data is limited. For this reason, one appealing
alternative is to develop pure physics-based methods to model and reason about dynamics, as
highlighted in the recent development of differentiable physics engines [9, 18, 69, 19, 67] and their
applications in robotics [9, 18, 69]. However, these physics engines typically take as input a full
description of the scene (e.g., the number of objects and their shapes) which usually requires certain
human priors, limiting their availability to applications with well-defined inputs only.

In this work, we take an approach fundamentally different from either network-based methods or
physics-based strategies. Noting that learning-based methods excel at parsing object and language
concepts from videos and physics laws are good at describing object dynamics, we propose Visual
Reasoning with Differentiable Physics (VRDP), a unified framework that combines a visual perception
module, a concept learner, and a differentiable physics engine. VRDP jointly learns object trajectories,
language concepts, and objects’ physics models to make accurate dynamic predictions. It starts
with the perception module running an object detector [28] on individual frames to generate object
proposals and connect them into trajectories based on a motion heuristic. Then, the concept learner
learns object- and event-based concepts, such as ‘shape’, ‘moving’, and ‘collision’ as in DCL [16, 59].
Based on the obtained object trajectories and attributes, the differentiable physics engine estimates all
dynamic and physical properties (e.g., velocity, angular velocity, restitution, mass, and the coefficient
of resistance) by comparing the simulated trajectories with the video observations. With these explicit
physical parameters, the physics engine reruns the simulation to reason about future motion and
causal events, which a program executor then executes to get the answer. The three components of
VRDP cooperate seamlessly: the concept learner grounds physical concepts needed by the physics
engine like ‘shape’ onto the objects detected by the perception module; the differentiable physics
engine estimates all physical parameters and simulates accurate object trajectories, which in turn help
the concept learning process in the concept learner.

Compared with existing methods, VRDP has several advantages thanks to its carefully modularized
design. First, it achieves the state-of-the-art performance on both synthetic videos (CLEVRER [80])
and real-world videos (Real-Billiard [64]) without sacrificing transparency or interpretability, espe-
cially in situations that require long-term dynamics prediction. Second, it has high data efficiency
thanks to the differentiable physics engine and symbolic representation. Third, it shows strong
generalization capabilities and can capture new concepts with only a few examples.

2 Related Work

Visual Reasoning Our model is related to reasoning on vision and natural language. Existing works
can be generally categorized into two streams as end-to-end approaches [37, 84, 75, 38, 5] and
neuro-symbolic approaches [81, 26, 27, 4, 60, 43, 59, 33, 3]. The end-to-end methods [37, 84, 75, 61]
typically tackle the visual question answering (VQA) problem by designing monolithic multi-modal
deep networks [29, 32]. They directly output answers without explicit and interpretable mechanisms.
Beyond question answering, neuro-symbolic methods [81, 26, 60, 43, 59] propose a set of visual-
reasoning primitives, which manifest as an attention mechanism capable of performing complex
reasoning tasks in an explicitly interpretable manner.

2

Dynamic visual reasoning in videos has attracted much research attention. Many video question
answering datasets [24, 47, 39, 68, 82] and the methods [83, 49, 35, 76, 79, 21] built on them mainly
focus on understanding diverse visual scenes, such as human actions (MovieQA [68]) or 3D object
movements without physical and language cues (CATER [24]). Differently, CLEVRER [80] targets
the physical and causal relations grounded in dynamic videos of rigid-body collisions and asks a
range of questions that requires the modeling of long-term dynamic predictions. For this reason, we
evaluate our method and compare it with other state-of-the-arts on CLEVRER.

Both end-to-end [64, 20] and neuro-symbolic methods [80, 16] have been explored on CLEVRER.
However, they either lack transparency or struggle for long-term dynamic prediction. In this paper,
we perform high-performance and interpretable reasoning by recovering the physics model of objects
and their interactions (e.g., collisions) from visual perception and language concepts.

Physical Models Physical models are widely used in video prediction [48, 22, 77, 78], neural
simulation and rendering [51, 53], and dynamic reasoning [10, 72]. For example, papers like
PhysNet [48, 22, 77, 78] leverage global or object-centric deep features to predict the physical motion
in video frames. Some other related works [62, 1, 66, 44] extend physical models to predict the effect
of forces and infer the geometric attributes and topological relations of cuboids.

In this work, we focus on dynamic visual reasoning about object interactions, dynamics, and physics
with question answering, which is central to human intelligence and a key goal of artificial intelligence.
Solving such tasks requires a good representation and understanding of physics models. A common
choice is to train a deep neural network for physical property estimation (e.g., location and velocity)
based on learned visual and dynamic priors [15, 10, 72, 71, 40, 53, 54, 31, 30]. However, since these
neural networks do not model physics laws, generalizing them to unseen events or counterfactual
scenarios could result in unexpected results. Our work is different and more physics-based: Inspired
by the recent advances in differentiable physics [9, 18, 69, 19, 67, 34], we implement an impulse-
based differentiable rigid-body simulator and leverage the power of its gradients to infer dynamics
information about the scene.

Physical Scene Understanding Our work is also relevant to studies on physical scene understand-
ing [7, 74, 67, 65, 8, 23, 48, 36], most of which propose pure neural-network solutions without
explicitly incorporating physics models. Benchmarks like PHYRE [7] study physical understanding
and reasoning based on pure videos without concept learning and language inference. Based on such
benchmarks, some works [73, 11, 51, 48, 53] learn compositional scene structure and estimate states
through physical motions and visual de-animation. Recently, two papers propose pure physics-based
methods [41, 36] that make heavy use of differentiable physics simulators, but they typically assume
concepts in the scene are given as input. Our work is unique in that we learn video and language
concepts from raw videos and infer dynamics information from a differentiable simulator, combining
the benefits of both learning and physics.

3 Method

By integrating differentiable physics into the dynamic reasoning framework, VRDP jointly learns
visual perception, language concepts, and physical properties of objects. The first two provide prior
knowledge for optimizing the third one to reason about the physical world, and the optimized physical
properties in turn help to learn better concepts. In the following, we first give an overview of our
framework and then describe each of its components in detail.

3.1 Framework Overview

An overview of VRDP is illustrated in Fig. 1. It contains three components: a visual perception
module, a concept learner, and a physics model. The input to the framework is a video and reasoning
questions, where the former is processed by the visual perception module to get object trajectories
and corresponding visual features, and the latter is parsed into executable symbolic programs with
language concepts by the concept learner. Similar to DCL [59, 16], the concept learner first grounds
object properties (e.g., color and shape) and event concepts (e.g., collision and moving) by aligning the
visual features and the corresponding concept embeddings in the (explanatory or descriptive) program
that does not require dynamic predictions, e.g., “what is the shape of ...”. With those perceptually
grounded object trajectories and properties, the physical model then performs differentiable simulation
to learn all physical parameters of the scene and objects by comparing the simulated trajectories with

3

Visual Perception Module

Object 1 Object 2 Object 3
pic_all pic_all pic_all

Obj1×Obj2
pic_all

Obj1×Obj3
pic_all

Obj2×Obj3
pic_all

…

…

…

Shape Color Mass Restitution Location Velocity …

Obj1 Cylinder Cyan 0.94 0.61 (-2.3,-1.7) (1.9, 1.8)

Obj2 Sphere Green 0.76 0.73 (-1.2, 1.1) (0.0, 0.0)

Obj3 Cylinder Green 1.25 0.90 (-2.2, 2.3) (1.8, -2.0)

Obj4 Cube PurpleUnkwn. Unkwn. (-6.7, 4.1) (2.6, -1.3)

Ø Predictive Question: What will not
happen next?
Choice: The green cylinder collides
with the cube.

Ø Counterfactual Question: Without
the green sphere, what will happen?
Choice: The green cylinder and the
cyan object collide.

Question
Parser

Cyan

Cube

…

Static
Concepts

…
Dynamic
Concepts

…
Event

Concepts

Stationary

Moving

Collision

In

Simulate & Get Events

Frame 0 - 35 Frame 35 - 70

Counterfactual
Simulation:

Remove the green sphere

Predictive
Simulation:

Frame 70 - 150

x

y

x

Object and Interactive Features

Input Video Frames Object Trajectories & Features

Physics Model

Input Questions Concept Embeddings & Programs

Damping Coeff. 0.06 Frictional Coeff. 0.03Radius 0.21

Concept Learner
Execute programs to get answers

Predictive: False� Counterfactual: True�

Object
Detector

Program 1: Negate(Filter(Unseen Events)) �
Filter(Collision, (Filter(Green, Cylinder), Filter(Cube)))

Program 2: Filter(Counterfact, Filter(Green, Sphere)) �
Filter(Collision, (Filter(Green, Cylinder), Filter(Cyan)))

Physical Parameters

update

Figure 1: VRDP contains three components including a visual perception module, a concept learner,
and a physics model. The perception module first runs an object detector [28] on individual frames to
generate object proposals and connect them into trajectories based on motion heuristic. Then, the
concept learner learns object- and event-based concepts, such as ‘shape’, ‘moving’, and ‘collision’,
as prior knowledge for the physics model. Based on the obtained object trajectories and concepts,
the differentiable physics engine estimates all dynamic and physical properties (e.g., velocity v,
angular velocity α, restitution r, massm, and coefficients of resistance λ) by comparing the simulated
trajectories with the video observations. With these explicit physical parameters, the physic engine
reruns the simulation to reason about future motion and causal events, which are then executed by a
symbolic executor to get the answer. Stroboscopic imaging is applied for motion visualization.

the video observations. After that, the physics engine simulates unseen trajectories for predictive and
counterfactual scenarios and generates their features, in turn enabling the concept learner to finetune
event concepts from the program that requires dynamic predictions, e.g., “what will happen ...” and
“what if ...”. Finally, a symbolic executor executes the parsed programs with the dynamic predictions
to get the answer.

3.2 Model Details

Visual Perception Module Given a video with the number of frames T , the visual perception
module parses the video frame-by-frame and associate the parsed objects in each frame into object
trajectories L = {ln}Nn=1, where ln denotes the object trajectory of the nth object and N is the
number of the objects in the video. Specifically, we leverage a pretrained Faster R-CNN [28] as
the object detector to get the Region of Interest (ROI) feature ft ∈ RN×D and the object location
of objects bt = [x2D

t , y2D
t , xBEV

t , yBEV
t] ∈ RN×4 at frame t, where D is the feature dimension,

(x2D
t , y2D

t) denotes the normalized object bounding box center in the image coordinate frame, and
(xBEV

t , yBEV
t) denotes the projected bird’s-eye view (BEV) location in the BEV coordinate frame

using the calibrated camera matrix. Following works [16, 25], we associate object proposals in
adjacent frames by thresholding their intersection over union (IoU) and obtain the object trajectory
ln = {bnt }Tt=1 for the nth object.

The visual perception module then constructs object and interactive representations for concept
learning. The object representation Fobj ∈ RN×(D+4T) contains both appearance-based Fa =
avg({ft}Tt=1) and trajectory-based feature Fl = {bt}Tt=1 for modeling static properties and dynamic
concepts, respectively, where avg(·) here represents the average ROI feature over time. The interactive
feature Fpair ∈ RT×N×N×12S , where S denotes a fixed temporal window size, is built on every
pair of objects. It contains object trajectories {bit}

t0+S/2
t0−S/2, {b

j
t}

t0+S/2
t0−S/2 of the objects i and j and their

distance {abs(bit − b
j
t)}

t0+S/2
t0−S/2 to model the collision event of the objects at a specific moment t0.

4

Concept Learner The concept learner grounds the physical and event concepts (e.g., shape and color)
as prior knowledge for the physics model from the video representation and language. It first leverages
a question parser to translate the input questions and choices into executable neuro-symbolic programs
where each language concept in the program is represented by a concept embedding. Similar to
[59, 16], this work adopts a seq2seq model [6] with an attention mechanism to translate language into
a set of symbolic programs, e.g., retrieving objects with certain colors, getting future or counterfactual
events, finding the causes of an event, thus decomposing complex questions into step-by-step dynamic
visual reasoning processes. The concept learner assigns each concept in the program (e.g., color,
shape, and collision) a randomly initialized embedding e ∈ RC so that the symbolic program can be
formulated as differentiable vector operations.

After that, it projects the visual representation into concept embedding spaces and performs Nearest
Neighbor (NN) search to quantize concepts for the object attributes and events. We implement the
projection through a linear layer P(·) and calculate the cosine similarity between two vectors in the
embedding space for NN search. For example, the confidence score of whether the nth object is
a cube can be represented by [cos(P(Fn

a), ecube)− µ]/σ, where ecube is the embedding of concept
‘cube’, µ and σ are the shifting and scaling scalars, and P(·) maps a D-dimensional visual feature
into a C-dimensional vector in this case.

Physics Model The differentiable physics model captures objects’ intrinsic physical properties and
makes accurate dynamic predictions for reasoning. With the perceptually grounded object shapes
and trajectories from the above two components of VRDP, it performs differentiable simulation to
optimize the physical parameters of the scene and objects by comparing the simulation with the video
observations L. Our physics model is implemented as an impulse-based differentiable rigid-body
simulator [34, 63, 14]. It iteratively simulates a small time step of ∆t based on the objects’ state
in the BEV coordinate through inferring collision events, forces (including resistance and collision
force), and impulses acting on the object, and updating the state of each object.

When an object moves on the ground with velocity −→v and angular velocity ω, we consider three
kinds of forces that affect the movement of the object: sliding friction, rolling resistance, and air
resistance. We use λ1, λ2, λ3 to denote their coefficients and have:

−→a =

{
−
−→v
|−→v | (λ1g + λ3|−→v |2) if the shape is not sphere

−
−→v
|−→v | (λ2g + λ3|−→v |2) if the shape is sphere

(1)

where g = 9.81m/s2 is the standard gravity and −→a denotes the acceleration of the object, whose
direction is opposite to the velocity. The velocity −→v and the location

−→
l′ = (x′, y′) are then updated

accordingly by the second order Runge-Kutta (RK2) algorithm [13]. Similarly, the angular velocity
ω also decreases at each time step due to the angular drag, and the angle α of the object is updated by
the RK2 algorithm.

The physics engine checks whether the boundaries of two objects with radius R are overlapped in the
BEV coordinate frame to detect collision events. Based on the fact that the total momentum of an
isolated system should be constant in the absence of net external forces, we compute the impulse
of collided objects and ignore the friction caused by the collision. Let (m1,m2), (r1, r2), (α1, α2),
(−→v1 ,−→v2), (

−→
l′1 ,
−→
l′2) denote the mass, restitution, angle, velocity and BEV location of two collided

objects at the moment of the collision, respectively;
−→
d1,
−→
d2 represent their collision unit directions

that the force is acting on, where
−→
d1 +

−→
d2 =

−→
0 . The change of velocity ∆−→v1 ,∆−→v2 at the moment of

collision can be obtained by calculating the impulse on the collision direction:
−−→
∆v1 = −(1 + r1r2)(m2/(m1 +m2))(

−→
d1 • (−→v1 −−→v2))

−→
d1

−−→
∆v2 = −(1 + r1r2)(m1/(m1 +m2))(

−→
d2 • (−→v2 −−→v1))

−→
d2,

(2)

the velocity −→v is then updated by −→v ← −→v + ∆−→v . Similarly, the angular velocity ω can be updated
by ω ← ω + ∆ω, where ∆ω is computed based on conservation of angular momentum.

Given an initial state of the scene and objects, our physics engine simulates force, impulse, and
collision events and iteratively updates the state of each element. All physical parameters including
R, λ,m, r, α,−→v ,

−→
l are initialized and then optimized with L-BFGS algorithm [57] by fitting the

simulated trajectories L′ = {(x′t, y′t)}Tt=1 into the perceptual trajectories LBEV = {(xBEV
t , yBEV

t)}Tt=1.

5

To alleviate the difficulty of the optimization, we mark the time frame of each object’s first collision
by calculating the BEV distance between every pair and decompose the differentiable physical
optimization and simulation into the following steps: 1) Since radius R and resistance coefficients
λ are consistent in all videos, we use K videos to jointly learn those physical parameters and fix
them for the optimization of other sample-dependent parameters. 2) For each video, we then use
the frames before the collision to optimize the collision-independent physical parameters, such as
initial velocity −→v0 , initial location

−→
l0 , and initial angle α0. 3) With the above parameters learned and

fixed, we optimize the remaining collision-dependent parameters, including mass m and resistance
r of each object. This process follows the curriculum learning paradigm [12] by optimizing from
fewer to more frames, e.g., multi-step optimization on [0, 40], [0, 80], and [0, 128] frames, where
the parameters in each step are initialized from the optimization of the previous step. 4) With all
parameters of the physical model learned, the engine runs simulations and re-calculates the trajectory-
based representations Fl for answering counterfactual, descriptive, and explanatory questions. 5)
For the predictive case, we leverage the learned physical model as initialization and re-optimize all
sample-dependent parameters with only the last 20 frames to reduce the cumulative error over time.

Symbolic Execution As in [59, 16], we perform reasoning with a program executor, which is a
collection of deterministic functional modules designed to realize all logic operations specified in
symbolic programs. Its input consists of the parsed programs, learned concept embeddings, and
visual representations, including the appearance-based feature Fa from the visual perception module
and the updated trajectory feature Fl from the physics engine. Given a set of parsed programs, the
program executor runs them step-by-step and derives the answer based on these representations. For
example, the ‘counting’ program outputs the number of objects which meet specific conditions (e.g.,
red sphere). In this process, the executor leverages the concept learner to filter out eligible objects.

Our reasoning process is designed fully differentiable w.r.t. the visual representations and the concept
embeddings by representing all object states, events, and results of all operators in a probabilistic
manner during training, supporting gradient-based optimization. Moreover, it works seamlessly with
our explicit physics engine, which simulates dynamic predictions through real physical parameters,
forming a symbolic and deterministic physical reasoning process. The whole reasoning process is
fully transparent and step-by-step interpretable.

3.3 Training Objectives

Similar to [16, 80], we train the program parser with program labels using cross-entropy loss,

Lprogram = −
J∑

j=1

1{yp = j} log(pj), (3)

where J is the size of the pre-defined program set, pj is the probability for the j-th program and yp is
the ground-truth program label.

We optimize the physical parameters in the physical model by comparing the simulation trajectories
with the video observations. All physical parameters includingR, λ,m, r, α,−→v ,

−→
l are initialized and

then optimized with L-BFGS algorithm [57] by fitting the simulated trajectories L′ = {(x′t, y′t)}Tt=1
into the perceptual trajectories LBEV = {(xBEV

t , yBEV
t)}Tt=1. We have:

LPhysics = ‖L′ − LBEV‖22, (4)

We optimize the feature extractor and the concept embeddings in the concept learner by question
answering. We treat each option of a multiple-choice question as an independent boolean question
during training. Specifically, we use cross-entropy loss to supervise open-ended questions and use
mean square error loss to supervise counting questions. Formally, for counting questions, we have

LQA,count = (ya − z)2, (5)
where z is the predicted number and ya is the ground-truth number label. For other open-ended
questions and multiple-choice questions, we have

LQA,others = −
A∑

a=1

1{ya = a} log(pa), (6)

where A is the size of the pre-defined answer set, pa is the probability for the a-th answer and ya is
the ground-truth answer label.

6

Methods Overall Predictive Counterfactual Descriptive Explanatory

per task per ques. per opt. per ques. per opt. per ques. per opt. per ques.

TVQA+ [47] 37.2 57.3 70.3 48.9 53.9 4.1 72.0 63.3 23.7
Memory [21] 27.2 43.3 50.0 33.1 54.2 7.0 54.7 53.7 13.9
IEP (V) [43] 20.2 40.5 50.0 9.7 53.4 3.8 52.8 52.6 14.5
TbD-net (V) [60] 23.6 58.6 50.3 6.5 56.1 4.4 79.5 61.6 3.8
HCRN [46] 27.3 44.8 54.1 21.0 57.1 11.5 55.7 63.3 21.0
MAC (V) [37] 32.1 65.5 51.0 16.5 54.6 13.7 85.6 59.5 12.5
MAC (V+) [37] † 44.2 69.8 59.7 42.9 63.5 25.1 86.4 70.5 22.3
NS-DR [80] †‡ 69.7 80.7 82.9 68.7 74.1 42.2 88.1 87.6 79.6
NS-DR (NE) [80] †‡ 64.1 77.7 75.4 54.1 76.1 42.0 85.8 85.9 74.3
DCL [16] † 75.5 84.1 90.5 82.0 80.4 46.5 90.7 89.6 82.8
DCL-Oracle [16] †‡ 75.6 84.5 90.6 82.1 80.7 46.9 91.4 89.8 82.0
Object-based Attention [20] 88.3 91.7 93.5 87.5 91.4 75.6 94.0 98.5 96.0

VRDP (ours) 82.9 86.9 91.7 83.8 89.9 75.7 89.8 89.1 82.4
VRDP (ours) † 86.6 89.4 94.5 89.2 92.5 80.7 91.5 90.9 85.2
VRDP (ours) †‡ 90.3 92.0 95.7 91.4 94.8 84.3 93.4 96.3 91.9

Table 1: Question-answering accuracy of visual reasoning models on CLEVRER [80]. We report
per-task and per-question overall accuracies, as well as per-option and per-question accuracies for
each sub-task. Note that predictive and counterfactual questions that require dynamics and physical
prediction are our focus. † denotes the method uses a supervised object detector, such as Faster/Mask
R-CNN [28]. ‡ indicates the use of object properties (i.e., shape, color, and material) as supervision.

4 Experiments

By recovering physics models of objects and their interactions from video and language, VRDP enjoys
the following benefits: 1) high accuracy and full transparency, 2) superior data efficiency, and 3) high
generalizability. In this section, we first evaluate the accuracy and data efficiency of VRDP on the
widely used dynamic visual reasoning benchmark CLEVRER [80] and its subsets; we then validate
the model’s generalizability on adapting to new concepts with few-shot data; lastly, we experiment
on the real-world dataset Real-Billiard [64] to show that VRDP works well in real-world dynamic
prediction and reasoning.

Datasets and Evaluation Settings To validate the effectiveness of our method for reasoning about
the physical world, we conduct main experiments on the CLEVRER [80] dataset, as it contains
both language and physics cues such as rigid body collisions and dynamics, compared to other
benchmarks that focus on either action understanding without physical inferring [47, 39] or temporal
reasoning without language concepts [24, 8]. CLEVRER includes four types of question answering
(QA): descriptive, explanatory, predictive, and counterfactual, where the first two types concern more
on video understanding, while the latter two types involve physical dynamics and predictions in
reasoning. Therefore, we mainly focus on the predictive and counterfactual questions in this work
and use QA accuracy as the evaluation metric.

We then collect a few-shot physical reasoning dataset with novel language and physical concepts (e.g.,
“heavier” and “lighter”), termed generalized CLEVRER, containing 100 videos (split into 25/25/50 for
train/validation/test) with 375 options in 158 counterfactual questions. This dataset is supplementary
to CLEVRER [80] for generalizing to new concepts with very few samples. For real-world scenarios,
we conduct experiments on the Real-Billiard [64] dataset, which contains three-cushion billiards
videos captured in real games for dynamics prediction. We generate 6 reasoning questions (e.g., “will
one billiard collide with ...?”) for each video and evaluate both the prediction error and QA accuracy.

Implementation Details We follow the experimental setting in [80, 16] using a pre-trained Faster R-
CNN model [28] to generate object proposals for each frame and training the language program parser
with 1,000 programs for all question types. We implement three versions of VRDP models, where our
unsupervised VRDP leverage a Slot-Attention model [58] to parse the objects unsupervisedly, while
VRDP † use Faster-RCNN [28] as the object detector. In addition to our standard model that grounds
object properties from question-answer pairs, we also train a variant (VRDP †‡) on CLEVRER with
an explicit rule-based program executor [80] and object attribute supervision. The camera matrix
is optimized from 20 training videos. We set ∆t = 0.004s,K = 10, S = 10, and T = 128 for
CLEVRER [80] and T = 20 for Real-Billiard [64]. More details of the dataset and settings can be
found in Supplemental Materials.

7

20 40 60 80 100
Proportion of Dataset (%)

20

40

60

80
A

cc
 (%

)

23.1

28.9 29.5 26.1
16.5

29.1

49.9

68.2

81.5 87.575.8 78.5
84.5 87.6 89.2

160%
higher
Acc

3× datareduction

Predictive

20 40 60 80 100
Proportion of Dataset (%)

20

40

60

80

8.3 12.1 12.8 10.0 13.711.5 28.3

49.1

62.4
75.660.5 63.7

73.6
78.1 80.7

426%
higher
Acc

2× data
reduction

Counterfactual

20 40 60 80 100
Proportion of Dataset (%)

60

70

80

90

55.2

73.3
77.1

80.5
85.6

54.8

73.6
84.9

91.3
94.0

84.9
87.9 88.5

90.4 91.5

53.8%
higher
Acc

3× data
reduction

Descriptive

20 40 60 80 100
Proportion of Dataset (%)

20

40

60

80

7.8 10.5 11.0 9.0 12.521.2

60.0

87.8 91.5
96.0

78.1 80.9 79.7 83.8 85.2

268%
higher
Acc

Explanatory
MAC(V) Object-based Attention Ours

Figure 2: Comparisons of the data efficiency evaluation on four types of questions with MAC (V) [37]
and Object-based Attention [20] trained with different proportion of the CLEVRER [80] dataset.
Our method is highly data-efficient in that it achieves comparable results with the state-of-the-art
counterpart [20] with 3× fewer data. It improves the reasoning accuracy significantly when fewer
data (e.g., 20%) are used.

4.1 Comparative Results on CLEVRER

We conduct experiments on CLEVRER against several counterparts: TVQA+ [47], Memory [21],
IEP (V) [43], TbD-net (V) [60], HCRN [46], MAC [37], NS-DR [80], DCL [16], and Object-based
Attention [20]. Among them, NS-DR [80] and DCL [16] are high-performance interpretable symbolic
models, while Object-based Attention [20] is the state-of-the-art end-to-end method.

From Tab. 1 we observe that: 1) Counterfactual and predictive questions are more difficult than
descriptive and explanatory ones as they require accurate physical dynamics and prediction hence
our main focus. By reconstructing the physical world explicitly, our method outperforms all existing
works on these two types by large margins. For example, VRDP † improves the per question
accuracy of counterfactual questions by 11.5% and 79.7% compared to the best end-to-end [20] and
neural-symbolic [16] counterparts.

2) The end-to-end model [20] improves the accuracy at the cost of losing model transparency
and interpretability. However, by leveraging object attribute supervision and explicit program
executors [80], our VRDP †‡ achieves new state-of-the-art overall performance on CLEVRER. It
closes the performance gap between interpretable models and state-of-the-art end-to-end methods.
Moreover, it shows the flexibility of our physics model that can be combined with various physical
concepts and program executors while achieving impressive performance.

3) We conducted ablative experiments to study the impact of pre-trained object detection modules
of our framework by replacing the supervised visual model [28] in VRDP † with an unsuper-
vised one [58] in VRDP. We observe that although the use of unsupervised detectors decreases
the performance slightly, our framework still enjoys higher performance than previous methods in
counterfactual and predictive questions.

4) Neither the neuro-symbolic nor end-to-end works employ explicit dynamic models with physical
meanings. In contrast, our model is fully transparent with step-by-step interpretable programs and
meaningful physical parameters powered by a differentiable engine.

4.2 Detailed Analysis

Evaluation of Data Efficiency We evaluated the data efficiency of VRDP with two representative
models: MAC (V) [37] and Object-based Attention [20]. From Fig. 2 we see that: VRDP is highly
data-efficient. When the amount of data is reduced, the accuracy of our model drops slightly, while the
performance of MAC (V) [37] and Object-based Attention [20] drops drastically due to insufficient
data. For example, we improve the counterfactual accuracy of Object-based Attention [20] by 426%
under the setting of 20% data. Notably, our model uses 20% of the dataset to achieve comparable
performance to other works that use 80% of data. This is because the components of VRDP, e.g.,
perception module and question parser, can be trained with a small amount of data. More importantly,
our physics model is built based on an explicit physics engine, which can be optimized from the
trajectory of a single video.

8

Question: What would happen if the blue sphere were heavier?
(Generalization to a new concept ‘heavier’ with few data.)

Choice: The blue cylinder collides with the cube.

Input Video Our Simulation

Answer: False

Figure 3: VRDP learns new concepts and ac-
curately reasons about counterfactual events
from few data on generalized CLEVRER.

Methods Per opt. Per ques.

MAC (V) [37] 63.8 22.0
Object-based Attention [20] 59.5 26.7
VRDP (Ours) 88.1 75.6

Table 2: Comparative results of generalizability
evaluation under the few-shot setting. All models
are first pretrained on CLEVRER and then fine-
tuned with only 25 videos for adapting to gener-
alized CLEVRER. VRDP can learn new concepts
quickly with few-shot data.

Methods Overall Predictive Counterfactual Descriptive Explanatory

per task per ques. per opt. per ques. per opt. per ques. per opt. per ques.

Baseline 72.6 81.6 85.1 72.4 77.6 49.6 87.8 88.0 80.6
+ Collision-independent First 81.3 87.8 86.1 72.8 89.3 74.1 91.3 91.9 86.9
+ Curriculum Optimization 85.6 90.2 87.6 76.5 94.8 84.3 92.2 93.3 89.2
+ Re-optimization for Prediction 90.3 92.0 95.7 91.4 94.8 84.3 93.4 96.3 91.9

Table 3: Ablation study on the optimization of physical parameters on CLEVRER [80]. The reasoning
accuracy for the four types of questions is continuously increased through a better learning process.

Evaluation of Generalizability This part studies the generalization capabilities of VRDP against
MAC (V) [37] and Object-based Attention [20] on the generalized CLEVRER dataset. Tab. 2 shows
our model outperforms other works by a large margin (75.6 vs. 26.7) on per question accuracy,
demonstrating our model can quickly learn new concepts from few examples by reconstructing the
physics world. An example of generalization with few-shot data is shown in Fig. 3. Our model learns
a novel concept “heavier” from only 25 videos and the corresponding question-answer pairs. The
simulation is then run with 5 times the mass to answer the question correctly.

Ablation Study on the Learning of Physics Models In this work, sample-independent physical
parameters (R, λ) are learned from multiple training videos. In contrast, the sample-dependent
parameters, such as m, r, α, v, l, can only be learned with a single video, leading to difficulties in
optimization, especially when there are many collisions. This part studies the optimization of these
sample-dependent parameters by making comparisons among the following four simplified learning
processes on CLEVRER [80]: 1) Baseline – optimize all target parameters directly from all frames
simultaneously. 2) Collision-independent First – first use the frames before the collision to optimize
collision-independent parameters for each object, including initial velocity −→v0 , initial location

−→
l0 ,

and initial angle α0; then optimize mass m and restitution r from all video frames. 3) Curriculum
Optimization – optimizem and r by performing multiple steps on [0, 40], [0, 80], and [0, 128] frames,
where each step is initialized from the optimization of the previous step. 4) Re-optimization for
Prediction (Full model) – leverage the learned physical parameters as initialization and re-optimize
all sample-dependent parameters with the last 20 frames to reduce the cumulative error over time.

Tab. 3 shows that the performance continuously increases when more optimization steps are used,
demonstrating the contribution of each part. The “Collision-independent First” rule offers the greatest
improvement, especially for counterfactual questions, as counterfactual simulations only rely on the
initial state. “Curriculum Optimization” improves all types of questions, and “Re-optimization for
Prediction” re-calculates the dynamics of the last 20 frames, thus mainly affect predictive questions.

Failure Analysis VRDP learns the physics model from object trajectories in videos and language
concepts in question-answer pairs. It is data-efficient and robust enough to work well when there
exists inaccurate perception or incorrect concept learning in some video frames. However, we noticed
that the model might fail in the following cases: 1) If the object collides immediately after entering
the image plane, there are insufficient frames before the collision to learn the initial velocity v0. 2) If
no collision occurs on an object, its restitution r and mass m cannot be optimized (unknown). We set
default values for them. 3) The optimization becomes difficult if there are many cubes and collisions
between them in the scene, because cube collisions (considering the sides and corners) are more
complicated than sphere and cylinders’. These issues are challenging and will be our future work.

9

Question: Will the red billiard collide with the top side
of the billiard table?

Answer: True

Ground Truth Our Prediction
Figure 4: An example of physical simulation
and question-answering on the real-world billiard
dataset [64]. VRDP learns accurate physics param-
eters and infers the correct answer by simulation.

Methods S1 Err. ↓ S2 Err. ↓ QA Acc. (%)↑
VIN [72] 1.02 5.11 58.3
OM [40] 0.59 3.23 61.1
CVP [78] 3.57 6.63 58.3
IN [10] 0.37 2.72 69.4
CIN [64] 0.30 2.34 72.2

VRDP (Ours) 0.24 0.88 80.6

Table 4: Comparisons of the prediction er-
ror and question-answering accuracy on Real-
Billiards. The rollout timesteps are chosen to
be the same (S1) and twice (S2) as the training
time (T = 20). The error is scaled by 1,000.

4.3 Comparative Results on Real-World Billiards

We also conduct experiments on the real-world dataset Real-billiard [64] with our supplemented
question-answer pairs. Note that the billiard table is a chaotic system, and highly accurate long-term
prediction is intractable. Fig. 4 shows an example of the ground truth video and our simulated
prediction based on the perceptual grounded physics model. It can be seen that the predicted collision
events and trajectories are of good quality. Tab. 4 evaluates the prediction errors under two different
rollout timesteps and QA accuracy with 5 competitors: VIN [72], OM [40], CVP [78], IN [10], and
CIN [64]. For the prediction task, the rollout timesteps are chosen to be the same (S1= [0, T]) and
twice (S2= [T, 2T]) as the training time, where the training time T = 20. We refer interested readers
to CIN [64] for more details. We find that VRDP is superior to these methods on both prediction and
question answering tasks. Moreover, VRDP works well in long-term prediction. It reduces the S2
error on CIN [64] by 62.4%.

5 Conclusion

This work introduces VRDP, a unified framework that integrates powerful differentiable physics
models into dynamic visual reasoning. It contains three mutually beneficial components: a visual
perception module, a concept learner, and a physics model. The visual perception module parses the
input video into object trajectories and visual representations; the concept learner grounds language
concepts and object attributes from question-answer pairs and the visual representations; with object
trajectories and attributes as prior knowledge, the physics model optimizes all physical parameters
of the scene and objects by differentiable simulation. With these explicit physical parameters, the
physics model reruns the simulation to reason about future motion and causal events, which are
then executed by a symbolic program executor to get the answer. Equipped with the powerful
physics model, VRDP is of highly data-efficient and generalizable that adapts to novel concepts
quickly with few-shot data. Moreover, both the explicit physics engine and the symbolic executor are
step-by-step interpretable, making VRDP fully transparent. Extensive experiments on CLEVRER
and Real-Billiards show that VRDP outperforms state-of-the-art reasoning methods by large margins.

Acknowledgments and Disclosure of Funding

Ping Luo was supported by the General Research Fund of HK No.27208720.

10

References
[1] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experiential

learning of intuitive physics. In NeurIPS, 2016. 3

[2] A. Ajay, M. Bauza, J. Wu, N. Fazeli, J. B. Tenenbaum, A. Rodriguez, and L. P. Kaelbling. Combining
physical simulators and object-based networks for control. In ICRA, 2019. 1

[3] S. Amizadeh, H. Palangi, O. Polozov, Y. Huang, and K. Koishida. Neuro-symbolic visual reasoning:
Disentangling" visual" from" reasoning". In ICML, 2020. 2

[4] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural module networks. In CVPR, 2016. 2

[5] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick, and D. Parikh. Vqa: Visual
question answering. In ICCV, 2015. 2

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate.
In ICLR, 2015. 5

[7] A. Bakhtin, L. van der Maaten, J. Johnson, L. Gustafson, and R. Girshick. Phyre: A new benchmark for
physical reasoning. In NeurIPS, 2019. 3

[8] F. Baradel, N. Neverova, J. Mille, G. Mori, and C. Wolf. Cophy: Counterfactual learning of physical
dynamics. In ICLR, 2020. 3, 7

[9] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum. Simulation as an engine of physical scene under-
standing. Proceedings of the National Academy of Sciences, 2013. 2, 3

[10] P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu. Interaction networks for learning
about objects, relations and physics. arXiv preprint arXiv:1612.00222, 2016. 3, 10

[11] D. M. Bear, C. Fan, D. Mrowca, Y. Li, S. Alter, A. Nayebi, J. Schwartz, L. Fei-Fei, J. Wu, J. B. Tenenbaum,
et al. Learning physical graph representations from visual scenes. In NeurIPS, 2020. 3

[12] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, pages 41–48, 2009. 6

[13] J. C. Butcher. A stability property of implicit runge-kutta methods. BIT Numerical Mathematics, pages
358–361, 1975. 5

[14] E. Catto. Modeling and solving constraints. In Game Developers Conference, page 16, 2009. 5

[15] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-based approach to
learning physical dynamics. In ICLR, 2017. 3

[16] Z. Chen, J. Mao, J. Wu, K.-Y. K. Wong, J. B. Tenenbaum, and C. Gan. Grounding physical concepts of
objects and events through dynamic visual reasoning. In ICLR, 2021. 2, 3, 4, 5, 6, 7, 8, 15, 16, 17

[17] E. Coumans. Bullet physics engine. Open Source Software: http://bulletphysics. org, 1(3):84, 2010. 17

[18] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-end differentiable
physics for learning and control. In NeurIPS, volume 31, pages 7178–7189, 2018. 2, 3

[19] J. Degrave, M. Hermans, J. Dambre, et al. A differentiable physics engine for deep learning in robotics.
Frontiers in neurorobotics, 13:6, 2019. 2, 3

[20] D. Ding, F. Hill, A. Santoro, and M. Botvinick. Object-based attention for spatio-temporal reasoning: Out-
performing neuro-symbolic models with flexible distributed architectures. arXiv preprint arXiv:2012.08508,
2020. 1, 2, 3, 7, 8, 9

[21] C. Fan, X. Zhang, S. Zhang, W. Wang, C. Zhang, and H. Huang. Heterogeneous memory enhanced
multimodal attention model for video question answering. In CVPR, 2019. 3, 7, 8

[22] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through video
prediction. In NeurIPS, 2016. 3

[23] C. Gan, J. Schwartz, S. Alter, M. Schrimpf, J. Traer, J. De Freitas, J. Kubilius, A. Bhandwaldar, N. Haber,
M. Sano, et al. Threedworld: A platform for interactive multi-modal physical simulation. arXiv preprint
arXiv:2007.04954, 2020. 3

[24] R. Girdhar and D. Ramanan. Cater: A diagnostic dataset for compositional actions and temporal reasoning.
In ICLR, 2020. 3, 7

11

[25] G. Gkioxari and J. Malik. Finding action tubes. In CVPR, 2015. 4

[26] C. Han, J. Mao, C. Gan, J. Tenenbaum, and J. Wu. Visual concept-metaconcept learning. In NeurIPS,
2019. 2

[27] X. Han, S. Wang, C. Su, W. Zhang, Q. Huang, and Q. Tian. Interpretable visual reasoning via probabilistic
formulation under natural supervision. In ECCV, 2020. 2

[28] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 2, 4, 7, 8,
17

[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 1, 2

[30] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. Neuralsim: Augmenting differentiable
simulators with neural networks. arXiv preprint arXiv:2011.04217, 2020. 3

[31] E. Heiden, D. Millard, H. Zhang, and G. S. Sukhatme. Interactive differentiable simulation. arXiv preprint
arXiv:1905.10706, 2019. 3

[32] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.
1, 2

[33] R. Hu, J. Andreas, T. Darrell, and K. Saenko. Explainable neural computation via stack neural module
networks. In ECCV, 2018. 2

[34] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. Difftaichi: Differentiable
programming for physical simulation. In ICLR, 2020. 3, 5, 15

[35] D. Huang, P. Chen, R. Zeng, Q. Du, M. Tan, and C. Gan. Location-aware graph convolutional networks for
video question answering. In AAAI, pages 11021–11028, 2020. 3

[36] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and C. Gan. Plasticinelab: A soft-body
manipulation benchmark with differentiable physics. In ICLR, 2021. 3

[37] D. A. Hudson and C. D. Manning. Compositional attention networks for machine reasoning. In ICLR,
2018. 1, 2, 7, 8, 9

[38] D. A. Hudson and C. D. Manning. Gqa: A new dataset for real-world visual reasoning and compositional
question answering. In CVPR, 2019. 2

[39] Y. Jang, Y. Song, Y. Yu, Y. Kim, and G. Kim. Tgif-qa: Toward spatio-temporal reasoning in visual question
answering. In CVPR, 2017. 3, 7

[40] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn, and J. Wu. Reasoning about physical
interactions with object-oriented prediction and planning. In ICLR, 2019. 3, 10

[41] K. M. Jatavallabhula, M. Macklin, F. Golemo, V. Voleti, L. Petrini, M. Weiss, B. Considine, J. Parent-
Levesque, K. Xie, K. Erleben, et al. gradsim: Differentiable simulation for system identification and
visuomotor control. In ICLR, 2021. 3

[42] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and R. Girshick. Clevr: A
diagnostic dataset for compositional language and elementary visual reasoning. In CVPR, 2017. 16

[43] J. Johnson, B. Hariharan, L. Van Der Maaten, J. Hoffman, L. Fei-Fei, C. Lawrence Zitnick, and R. Girshick.
Inferring and executing programs for visual reasoning. In ICCV, pages 2989–2998, 2017. 2, 7, 8

[44] T. Kipf, E. van der Pol, and M. Welling. Contrastive learning of structured world models. In ICLR, 2020. 3

[45] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In ICLR,
2017. 2

[46] T. M. Le, V. Le, S. Venkatesh, and T. Tran. Hierarchical conditional relation networks for video question
answering. In CVPR, pages 9972–9981, 2020. 7, 8

[47] J. Lei, L. Yu, M. Bansal, and T. L. Berg. Tvqa: Localized, compositional video question answering. In
EMNLP, 2018. 3, 7, 8

[48] A. Lerer, S. Gross, and R. Fergus. Learning physical intuition of block towers by example. In ICML, 2016.
3

12

[49] X. Li, J. Song, L. Gao, X. Liu, W. Huang, X. He, and C. Gan. Beyond rnns: Positional self-attention with
co-attention for video question answering. In AAAI, pages 8658–8665, 2019. 3

[50] Y. Li, H. He, J. Wu, D. Katabi, and A. Torralba. Learning compositional koopman operators for model-
based control. In ICLR, 2020. 1

[51] Y. Li, T. Lin, K. Yi, D. Bear, D. Yamins, J. Wu, J. Tenenbaum, and A. Torralba. Visual grounding of
learned physical models. In ICML, pages 5927–5936, 2020. 3

[52] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba. Learning particle dynamics for manipulating
rigid bodies, deformable objects, and fluids. In ICLR, 2019. 1

[53] Y. Li, J. Wu, J.-Y. Zhu, J. B. Tenenbaum, A. Torralba, and R. Tedrake. Propagation networks for model-
based control under partial observation. In ICRA, 2019. 2, 3

[54] J. Liang and M. C. Lin. Differentiable physics simulation. In ICLR Workshop, 2020. 3

[55] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for
object detection. In CVPR, pages 2117–2125, 2017. 17

[56] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
coco: Common objects in context. In ECCV, pages 740–755. Springer, 2014. 17

[57] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical
programming, pages 503–528, 1989. 5, 6, 17

[58] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy, and
T. Kipf. Object-centric learning with slot attention. arXiv preprint arXiv:2006.15055, 2020. 7, 8

[59] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu. The neuro-symbolic concept learner: Interpreting
scenes, words, and sentences from natural supervision. In ICLR, 2019. 2, 3, 5, 6

[60] D. Mascharka, P. Tran, R. Soklaski, and A. Majumdar. Transparency by design: Closing the gap between
performance and interpretability in visual reasoning. In CVPR, pages 4942–4950, 2018. 2, 7, 8

[61] I. Misra, R. Girshick, R. Fergus, M. Hebert, A. Gupta, and L. Van Der Maaten. Learning by asking
questions. In CVPR, pages 11–20, 2018. 2

[62] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi. “what happens if...” learning to predict the effect of
forces in images. In ECCV. Springer, 2016. 3

[63] M. Müller, J. Stam, D. James, and N. Thürey. Real time physics: class notes. In ACM SIGGRAPH 2008
classes, pages 1–90, 2008. 5

[64] H. Qi, X. Wang, D. Pathak, Y. Ma, and J. Malik. Learning long-term visual dynamics with region proposal
interaction networks. In ICLR, 2021. 1, 2, 3, 7, 10, 15, 17

[65] R. Riochet, M. Y. Castro, M. Bernard, A. Lerer, R. Fergus, V. Izard, and E. Dupoux. Intphys: A framework
and benchmark for visual intuitive physics reasoning. arXiv preprint arXiv:1803.07616, 2018. 3

[66] T. Shao, A. Monszpart, Y. Zheng, B. Koo, W. Xu, K. Zhou, and N. J. Mitra. Imagining the unseen:
Stability-based cuboid arrangements for scene understanding. ACM TOG, 2014. 3

[67] K. Smith, L. Mei, S. Yao, J. Wu, E. Spelke, J. Tenenbaum, and T. Ullman. Modeling expectation violation
in intuitive physics with coarse probabilistic object representations. NeurIPS, 32:8985–8995, 2019. 2, 3

[68] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler. MovieQA: Understanding
Stories in Movies through Question-Answering. In CVPR, 2016. 3

[69] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and stable modes
for tool-use and manipulation planning. In IJCAI, 2019. 2, 3

[70] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, pages 5998–6008, 2017. 2

[71] R. Veerapaneni, J. D. Co-Reyes, M. Chang, M. Janner, C. Finn, J. Wu, J. Tenenbaum, and S. Levine. Entity
abstraction in visual model-based reinforcement learning. In CoRL, pages 1439–1456, 2020. 3

[72] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tacchetti. Visual interaction networks:
Learning a physics simulator from video. NeurIPS, 30:4539–4547, 2017. 3, 10

13

[73] J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum. Learning to see physics via visual de-animation. In
NeurIPS, pages 153–164, 2017. 3

[74] J. Wu, I. Yildirim, J. J. Lim, W. T. Freeman, and J. B. Tenenbaum. Galileo: Perceiving physical object
properties by integrating a physics engine with deep learning. In NeurIPS, 2015. 3

[75] Q. Wu, C. Shen, L. Liu, A. Dick, and A. van den Hengel. What value do explicit high level concepts have
in vision to language problems? In CVPR, 2016. 2

[76] D. Xu, Z. Zhao, J. Xiao, F. Wu, H. Zhang, X. He, and Y. Zhuang. Video question answering via gradually
refined attention over appearance and motion. In ACM MM, 2017. 3

[77] T. Ye, X. Wang, J. Davidson, and A. Gupta. Interpretable intuitive physics model. In ECCV, 2018. 3

[78] Y. Ye, M. Singh, A. Gupta, and S. Tulsiani. Compositional video prediction. In ICCV, pages 10353–10362,
2019. 3, 10

[79] Y. Ye, Z. Zhao, Y. Li, L. Chen, J. Xiao, and Y. Zhuang. Video question answering via attribute-augmented
attention network learning. In ICLR, 2017. 3

[80] K. Yi, C. Gan, Y. Li, P. Kohli, J. Wu, A. Torralba, and J. B. Tenenbaum. Clevrer: Collision events for video
representation and reasoning. In ICLR, 2020. 2, 3, 6, 7, 8, 9, 15, 16, 17, 21

[81] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum. Neural-symbolic vqa: Disentangling
reasoning from vision and language understanding. In NeurIPS, 2018. 2

[82] A. Zadeh, M. Chan, P. P. Liang, E. Tong, and L.-P. Morency. Social-iq: A question answering benchmark
for artificial social intelligence. In CVPR, 2019. 3

[83] H. Zhou, A. Kadav, F. Lai, A. Niculescu-Mizil, M. R. Min, M. Kapadia, and H. P. Graf. Hopper: Multi-hop
transformer for spatiotemporal reasoning. In ICLR, 2021. 3

[84] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7w: Grounded question answering in images. In
CVPR, 2016. 2

14

A Appendix

In this section, we provide supplementary details of our VRDP. First, we give more details of our
physics model and the neuro-symbolic operations in the program executor. We then introduce the
datasets we use and build, including a synthetic dataset (CLEVRER [80]), a real-world dataset
(Real-Billiard [64]), and a newly built few-shot dataset (Generalized CLEVRER). After that, we
detail the training settings and steps.

A.1 Details of Physics Model

In this part, we provide supplementary details of our physics model. With the perceptually grounded
object shapes and trajectories from the perception module and the concept learner of VRDP, our
physics model performs differentiable simulation to optimize the physical parameters of the scene
and objects by comparing the simulation L′ with the video observations LBEV. The target bird’s-eye
view (BEV) trajectory LBEV is obtained by projecting the object center to the BEV coordinate. The
Camera-to-BEV projection can be written as:xy−

1

BEV

= K−1 ·

 x · zy · z
z
1

camera

(7)

where K is the estimated camera matrix, [x, y, z]camera is the point in 2D image coordinates (zcamera

can be calculated from the camera matrix K), [x, y]BEV denotes the horizontal position and vertical
position of the projected point in BEV coordinates.

Based on the graphics programming language DiffTaichi [34], our physics model is implemented
as an impulse-based differentiable rigid-body simulator. Based on conservation of momentum and
angular momentum, it iteratively simulates a small time step of ∆t based on the objects’ state in the
BEV coordinate through inferring collision events, forces and impulses acting on the object, and
updating the state of each object. In addition to calculating the acceleration based on the conservation
of momentum in our main paper, we also calculate the angular acceleration based on the angular
momentum. For example, we have:

−→
M = −→r ×

−→
F and M = I dω

dt , where
−→
M denotes moment of

force,
−→
F is the applied force, and −→r is the distance from the applied force to object. The momentum

of inertia I is 1/6m(2R)2 for the cube, where m represents its mass.

!/2
ℎ/2

%

%

&

Figure 5: An illustration of circle-rectangle collision de-
tection. The gray part denotes the rectangle (cube) and we
transform the origin to the center of the rectangle so that
the coordinate axis is parallel to its side. For each simula-
tion step: we consider three situations: 1) if the center of
the circle is in the orange area, the circle and the rectangle
do not collide; 2) if the circle center is in the red area, the
circle collides with the rectangle and the collision direc-
tion is perpendicular to the coordinate axis; 3) if the circle
center falls in the purple area, the circle and the rectangle
collide and the collision direction is perpendicular to the
tangent of the collision position on the circle.

In this work, we perform collision detection between circles and rectangles in BEV view. Fig. 5
shows the illustration of our circle-rectangle collision detection algorithm. We project the center of
the rectangle (the gray part) to the origin so that the coordinate axis is parallel to its side. Then the
area outside the rectangle is divided into three parts that the center of the circle can fall: 1) collision
with the sides of the square (red); 2) collision with the corners of the square (purple); 3) no collision
(orange). The implementation of circle-circle and rectangle-rectangle collisions is similar.

A.2 Details of Neuro-Symbolic Programs

Following DCL [16], we represent the objects, events and moments through learnable embeddings
and quantize the static and dynamic concepts to perform temporal and causal reasoning. In this part,

15

pic_all
Object Feature

Cyan

Purple

Green

Color Concepts

Projection

Cosine Similarity

Cyan

Shape Feature

Filter(Green,Sphere)

Counterfactual Simulation &
Re-calculate Features

Filter(Cyan)

Filter(Green,Sphere)

Filter(Collision)

Programs Inputs

pic_all
pic_all
pic_all
pic_all

1
2
3
4

Concepts

Sphere

Green

Outputs

1

4

1&3
l3 1&4

1&3

pic_all

pic_all

1

4
pic_all3 Cyan

pic_all

pic_all

1

4
pic_all3

Cylinder

Green

1 3 4

Collision
True (0.96)

1 3 4

1 2 3 4

Color Space

1.

2.

3.

4.

5. 1&3

Physics
Model

Concept LearnerProgram Executor

Counterfactual Question: Without the green sphere, what will happen?
Choice: The green cylinder and the cyan object collide.
Answer: True

Figure 6: An illustration of the reasoning process of the program executor and concept learner. The
program executor executes the parsed programs (e.g., Filter_static_concept (color, shape, material))
step-by-step with the visual representations and language concepts. For each step, it leverages the
concept learner or physical model to filter specific targets or simulate/predict new visual trajectories.

we list all the available data types and operations for CLEVRER in Tab. 5. We refer interested readers
to DCL [16] for more details.

We also visualize the reasoning process of an example step-by-step in Fig. 6. It shows how we
get the correct answer for the counterfactual question ‘Without the green sphere, what will hap-
pen?’ with a choice ‘The green cylinder and the cyan object collide’. After the first program
‘Filter_static_concept(all objects, green sphere)’ is executed, the executor removes the retrieved
object, reruns the simulation to get counterfactual trajectories, and updates the visual features. After
that, the executor runs the remaining programs and gets the final answer ‘True’ with a probability of
0.96 calculated through the cosine distance in the concept learner.

A.3 Details of Datasets

CLEVRER CLEVRER [80] is a diagnostic video dataset for systematic evaluation of computational
models on a wide range of reasoning tasks. Objects in CLEVRER videos adopt similar compositional
intrinsic attributes as in CLEVR [42], including three shapes (cube, sphere, and cylinder), two
materials (metal and rubber), and eight colours (gray, red, blue, green, brown, cyan, purple, and
yellow). All objects have the same size, same friction coefficient (except the sphere that rolling on
the ground), so no vertical bouncing occurs during the collision. Each object has a different mass
and a different restitution coefficient. CLEVRER introduces three types of events: enter, exit and
collision, each of which contains a fixed number of object participants: 2 for collision and 1 for enter
and exit. The objects and events form an abstract representation of the video.

CLEVRER includes four types of question: descriptive (e.g.‘what color’), explanatory (‘what’s
responsible for’), predictive (‘what will happen next’), and counterfactual (‘what if’), where the
first two types concern more on video understanding and temporal reasoning, while the latter two
types involve physical dynamics and predictions in reasoning. Therefore, we mainly focus on the
predictive and counterfactual questions in this work. CLEVRER consists of 2,000 videos, with a
number of 1,000 training videos, 5,000 validation videos, and 5,000 test videos. It also contains
219,918 descriptive questions, 33,811 explanatory questions, 14,298 predictive questions, and 37,253
counterfactual questions. In this paper, we tune the model using the validation set and evaluate it
with the test set.

16

Generalized CLEVRER To evaluate the generalizability of reasoning methods, we collect a
few-shot physical reasoning dataset with novel language and physical concepts (e.g., ‘heavier’
and ‘lighter’), termed generalized CLEVRER, containing 100 videos (split into 25/25/50 for
train/validation/test) with 375 options in 158 counterfactual questions. This dataset is supplementary
to CLEVRER [80] for generalizing to new concepts (i.e., heavier, lighter) with very few samples. All
videos last for 5 seconds and are generated by a physics engine [17] that simulates object motion
plus a graphs engine that renders the frames. It has the same video settings (objects and events
settings) with CLEVRER but different questions/concepts, e.g., “What would happen if the blue
sphere were heavier?”, we generate the ground truth video in the counterfactual case by setting five
times the weight and perform the physical simulation with Bullet [17]. In this work, we evaluate the
QA accuracy of this dataset.

Real-Billiard For real-world scenarios, we conduct experiments on the Real-Billiard [64] dataset,
which contains three-cushion billiards videos captured in real games for dynamics prediction. There
are 62 training videos with 18,306 frames, and 5 testing videos with 1,995 frames. The bounding box
annotations are from an off-the-shelf ResNet-101 FPN detector [55] pretrained on COCO [56] and
fine-tuned on a subset of 30 images from our dataset. Wrong detections are manually filtered out. We
generate 6 reasoning questions (e.g., “will one billiard collide with ...?”) for each video and evaluate
both the prediction error and QA accuracy.

A.4 Details of Training Settings

As in [80, 16], we use a pre-trained Faster R-CNN model [28] that is trained on 4,000 video frames
randomly sampled from the training set with object masks and attribute annotations to generate object
proposals for each frame. We train the language program parser with 1,000 programs for all question
types. All deep modules (concept learner and program executor) are trained using Adam optimizer
for 40 epochs on 8 Nvidia 1080Ti GPUs and the learning rate is set to 10−4. The camera matrix
is optimized from 20 training videos. We set ∆t = 0.004s, D = 256, C = 64,K = 10, S = 10,
and T = 128 for CLEVRER [80] and T = 20 for Real-Billiard [64]. In addition to our standard
model that grounds object properties from question-answer pairs, we also train a variant (VRDP †)
on CLEVRER with an explicit rule-based program executor [80] and object attribute supervisions
(attribute annotation in 4000 frames learned by the Faster R-CNN model).

For the physical model, we use the L-BFGS optimizer [57] with an adaptive learning rate to optimize
all physical parameters. The optimization terminates when it reaches a certain number of steps
or the loss is less than a certain value. In all experiments, the number of the optimization step is
set to 20. The loss threshold is set to 0.0005 for the learning of collision-independent parameters
(i.e., initial velocity, initial location, and initial angle), and 0.0002, 0.001, 0.01 for the optimization
of collision-dependent parameters (mass and restitution) on [0, 40], [0, 80], and [0, 128] frames,
respectively.

The training of VRDP can be summarized into three stages. First, we extract the visual features
directly from the video by the visual perception module, and learn language concepts in the concept
learner from all descriptive and explanatory questions; second, we optimize all physical parameters
by using the perceived trajectories and the learned concepts; third, after obtaining the physics model,
we re-calculate the visual features from the simulated trajectories and finetune language concept
embeddings from all question types, including predictive and counterfactual questions. During this
training process, the three parts of VRDP are integrated seamlessly and benefit each other.

A.5 Visualizations

We show visualization examples (including failure cases) on CLEVRER [80] in Fig. 7 and Fig. 8.
We also show examples on Real-Billiards [64] in Fig. 9. These figures show that our model can
accurately learn physical parameters from video and language and perform causal simulations,
predictive simulations, and counterfactual simulations for dynamic visual reasoning. Note that the
billiard table is a chaotic system, and highly accurate long-term prediction is intractable. For more
failure analysis, please refer to our main paper.

17

Broader Impact

Our work focuses on dynamic visual reasoning about object interactions, dynamics, and physics with
question answering, which is central to human intelligence and a key goal of artificial intelligence.
We envision that the work will benefit a wide range of applications involving cognition and reasoning,
such as robot control. The proposed method improves the accuracy, interpretability, and robustness
of these applications, ultimately leading to better safety. We do not foresee obvious undesirable
ethical/social impacts at this moment.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please see the ‘Failure Analysis’

section of our paper.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please

refer to the appendix.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We will release
our codes and data upon the publication of this paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] Please see the ‘Datasets and Evaluation Settings’ and ‘Implementation
Details’ sections of our paper.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see the ‘Implementation
Details’ section of the appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

18

Descriptive Q1: How many collisions happen? A: 2

Input Frames Causal Simulation

Predictive Simulation

Counterfactual Simulation
(without the blue cylinder)

Explanatory Q: Which of the following is not responsible for the collision
between the blue cylinder and the cube?
a) The collision between the gray sphere and the blue sphere.
b) The presence of the gray metal object.
c) The presence of the gray rubber object.

A: True
A: True
A: False

Descriptive Q2: What shape is the first object to collide with the blue cylinder? A: sphere

Predictive Q: Which event will happen next?
a) The gray sphere and the cube collide.
b) The brown cube and the blue object collide.
c) The blue cylinder exits the scene.

Counterfactual Q: Without the blue cylinder, what will happen?
a) The metal sphere collide with the cube.
b) The cube and the rubber object collide.
c) The metal sphere collide with the gray rubber object.

Descriptive Q3: What color is the object that exits the scene? A: gray

A: True
A: True
A: False

A: True
A: False
A: False

GT: 2

GT: True
GT: True
GT: False

GT: sphere
GT: gray

GT: True
GT: False
GT: False

GT: True
GT: False
GT: False

Mistake: because the gray sphere does not collide in the video, we cannot optimize its mass and restitution (set to the default).

———————————————————————————————————————-

Descriptive Q1: How many collisions happen? A: 3

Input Frames Causal Simulation

Predictive Simulation

Counterfactual Simulation
(without the cyan sphere)

Explanatory Q: Which of the following is not responsible for the collision
between the yellow cylinder and the sphere?
a) The presence of the red cube.
b) The collision between the cube and the cyan sphere.
c) The presence of the brown cylinder.

A: True
A: True
A: False

Descriptive Q2: What shape is the first object that enter the scene? A: cube

Predictive Q: Which event will happen next?
a) The cyan sphere and the brown cylinder collide.
b) The yellow object exits the scene.

Counterfactual Q: Without the cyan sphere, what will happen?
a) The cube collide with the brown object.
b) The cube and the yellow object collide.
c) The brown cylinder collide with the yellow object.

Descriptive Q3: How many cylinders enter the scene after the cube enters? A: 1

A: False
A: False

A: False
A: True
A: False

GT: 3

GT: True
GT: True
GT: False

GT: cube
GT: 1

GT: False
GT: False

GT: False
GT: True
GT: False

Descriptive Q4: What color is the object that is stationary? A: brown GT: brown

Figure 7: Visualization (1) of the videos and question-answering results of our VRDP on CLEVRER.
We highlighted our failure in red and explained the cause of it.

19

Descriptive Q1: Are there any moving red objects when the video ends? A: no

Input Frames Causal Simulation

Predictive Simulation

Counterfactual Simulation
(without the green cylinder)

Explanatory Q: Which of the following is not responsible for the sphere's
exiting the scene?
a) The presence of the cyan object.
b) The presence of the purple rubber cube.
c) The presence of the green metal cylinder.
d) The collision between the sphere and the cyan cylinder.

A: True
A: False
A: True
A: True

Descriptive Q2: What color is the object that enters the scene? A: purple

Predictive Q: Which event will happen next?
a) The green cylinder and the sphere collide.
b) The green cylinder collides with the cube.

Counterfactual Q: Without the green cylinder, what will not happen?
a) The sphere and the cube collide.
b) The sphere and the cyan cylinder collide.
c) The cube and the cyan cylinder collide.

Descriptive Q3: What is the color of the first object to collide with the sphere? A: green

A: False
A: True

A: True
A: True
A: True

GT: no

GT: True
GT: False
GT: True
GT: True

GT: purple
GT: green

GT: False
GT: True

GT: False
GT: True
GT: True

Mistake: since only a part of the purple object is in the image plane in many frames, our model underestimates its velocity.

———————————————————————————————————————-

Descriptive Q1: What is the material of the last object that enters the scene? A: metal

Input Frames Causal Simulation

Predictive Simulation

Counterfactual Simulation
(without the blue cylinder)

Explanatory Q: Which of the following is responsible for the collision between
the cylinder and the metal object?
a) The presence of the blue rubber cube.
b) The cube's colliding with the cylinder.
c) The presence of the blue rubber sphere.

A: True
A: True
A: False

Descriptive Q2: What is the material of the last object to collide with the cylinder?A: metal

Predictive Q: Which event will happen next?
a) The metal object collides with the blue sphere.
b) The cube and the blue sphere collide.

Counterfactual Q: If the cylinder is removed, which event will happen?
a) The cube collides with the rubber sphere.
b) The cube and the metal sphere collide.
c) The green sphere and the rubber sphere collide.

Descriptive Q3: How many blue cubes enter the scene? A: 1

A: False
A: True

A: False
A: True
A: False

GT: metal

GT: True
GT: True
GT: False

GT: metal
GT: 1

GT: False
GT: True

GT: False
GT: True
GT: False

Descriptive Q4: How many moving green objects are there when the video ends? A: 2 GT: 2

Figure 8: Visualization (2) of the videos and question-answering results of our VRDP on CLEVRER.
We highlighted our failure in red and explained the cause of it.

20

Type Operation Signature

Input
Operations

Start ()→ event
Returns the special “start” event
end ()→ event
Returns the special “end” event
Objects ()→ objects
Returns all objects in the video
Events ()→ events
Returns all events happening in the video
UnseenEvents ()→ events
Returns all future events happening in the video

Output
Operations

Query_color (object)→ color
Returns the color of the input object
Query_material (object)→ material
Returns the material of the input objects
Query_shape (object)→ shape
Returns the shape of the input objects
Count (objects)→ int
Returns the number of the input objects/ events (events)→ int
Exist (objects)→ bool
Returns “yes” if the input objects is not empty
Belong_to (event, events)→ bool
Returns “yes” if the input event belongs to the input event sets
Negate (bool)→ bool
Returns the negation of the input boolean

Physics
Operations

Counterfactual_simulation (object)→ events, representations
Perform simulation with the object removed
Predictive_simulation (objects)→ events, representations
Perform simulation after the video ends
Apply_heavier (object)→ object
Assign the object five times its weight before the counterfactual simulation
Apply_lighter (object)→ object
Assign the object one-fifth of its weight before the counterfactual simulation

Object
Filter
Operations

Filter_static_concept (objects, concept)→ objects
Select objects from the input list with the input static concept
Filter_dynamic_concept (objects, concept, frame)→ objects
Selects objects in the input frame with the dynamic concept
Unique (objects)→ object
Return the only object in the input list

Event
Filter
Operations

Filter_in (events, objects)→ events
Select incoming events of the input objects
Filter_out (events, objects)→ events
Select existing events of the input objects
Filter_collision (events, objects)→ events
Select all collisions that involve an of the input objects
Get_col_partner (event, object)→ object
Return the collision partner of the input object
Filter_before (events, events)→ events
Select all events before the target event
Filter_after (events, events)→ events
Select all events after the target event
Filter_order (events, order)→ event
Select the event at the specific time order
Filter_ancestor (event, events)→ events
Select all ancestors of the input event in the causal graph
Get_frame (event)→ frame
Return the frame of the input event in the video
Unique (events)→ event
Return the only event in the input list

Table 5: All neuro-symbolic operations on the CLEVRER dataset [80]. Our model contains five types
of operations, including input, output, physics, object filter, and event filter operations. In this table,
“order” denotes the chronological order of an event, e.g.“First”, “Second” and “Last”; “static concept”
denotes object-level static concepts like “Blue”, “Cube” and “Metal”; “dynamic concept” represents
object-level dynamic concepts like “Moving” and “Stationary”; and “representations” denotes the
visual features that are calculated from object trajectories.

21

Q1: Will the yellow billiard collide with the right
side of the billiard table?

Ground Truth

Our Prediction

Ground Truth

Our Prediction

Ours: True
GT: True

Q2: Will the yellow billiard collide with the top
side of the billiard table?

Ours: False
GT: False

Q3: Will the white billiard collide with the right
side of the billiard table?

Ours: True
GT: True

Q4: Will the white billiard collide with the top side
of the billiard table?

Ours: True
GT: True

Q1: Will the yellow billiard collide with the right
side of the billiard table?

Ours: True
GT: True

Q2: Will the yellow billiard collide with the red
billiard?

Ours: False
GT: False

Q3: Will the yellow billiard collide with the bottom
side of the billiard table?

Ours: False
GT: False

Q4: Will the yellow billiard collide with the white
billiard?

Ours: False
GT: False

Figure 9: Visualization examples of the videos and question-answering results of our VRDP on Real-
Billiards. Note that the billiard table is a chaotic system, and highly accurate long-term prediction is
intractable.

22

	Introduction
	Related Work
	Method
	Framework Overview
	Model Details
	Training Objectives

	Experiments
	Comparative Results on CLEVRER
	Detailed Analysis
	Comparative Results on Real-World Billiards

	Conclusion
	Appendix
	Details of Physics Model
	Details of Neuro-Symbolic Programs
	Details of Datasets
	Details of Training Settings
	Visualizations

